MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc2lem Structured version   Unicode version

Theorem axcc2lem 8815
Description: Lemma for axcc2 8816. (Contributed by Mario Carneiro, 8-Feb-2013.)
Hypotheses
Ref Expression
axcc2lem.1  |-  K  =  ( n  e.  om  |->  if ( ( F `  n )  =  (/) ,  { (/) } ,  ( F `  n ) ) )
axcc2lem.2  |-  A  =  ( n  e.  om  |->  ( { n }  X.  ( K `  n ) ) )
axcc2lem.3  |-  G  =  ( n  e.  om  |->  ( 2nd `  ( f `
 ( A `  n ) ) ) )
Assertion
Ref Expression
axcc2lem  |-  E. g
( g  Fn  om  /\ 
A. n  e.  om  ( ( F `  n )  =/=  (/)  ->  (
g `  n )  e.  ( F `  n
) ) )
Distinct variable groups:    A, f, n    f, F, g    g, G, n    n, K
Allowed substitution hints:    A( g)    F( n)    G( f)    K( f, g)

Proof of Theorem axcc2lem
Dummy variables  a 
z  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 8059 . . . . 5  |-  om  e.  _V
2 snex 4688 . . . . . . . 8  |-  { n }  e.  _V
3 fvex 5875 . . . . . . . 8  |-  ( K `
 n )  e. 
_V
42, 3xpex 6712 . . . . . . 7  |-  ( { n }  X.  ( K `  n )
)  e.  _V
54a1i 11 . . . . . 6  |-  ( ( om  e.  _V  /\  n  e.  om )  ->  ( { n }  X.  ( K `  n
) )  e.  _V )
6 axcc2lem.2 . . . . . 6  |-  A  =  ( n  e.  om  |->  ( { n }  X.  ( K `  n ) ) )
75, 6fmptd 6044 . . . . 5  |-  ( om  e.  _V  ->  A : om --> _V )
81, 7ax-mp 5 . . . 4  |-  A : om
--> _V
9 sneq 4037 . . . . . . . . . 10  |-  ( n  =  k  ->  { n }  =  { k } )
10 fveq2 5865 . . . . . . . . . 10  |-  ( n  =  k  ->  ( K `  n )  =  ( K `  k ) )
119, 10xpeq12d 5024 . . . . . . . . 9  |-  ( n  =  k  ->  ( { n }  X.  ( K `  n ) )  =  ( { k }  X.  ( K `  k )
) )
1211, 6, 4fvmpt3i 5953 . . . . . . . 8  |-  ( k  e.  om  ->  ( A `  k )  =  ( { k }  X.  ( K `
 k ) ) )
1312adantl 466 . . . . . . 7  |-  ( ( n  e.  om  /\  k  e.  om )  ->  ( A `  k
)  =  ( { k }  X.  ( K `  k )
) )
1413eqeq2d 2481 . . . . . 6  |-  ( ( n  e.  om  /\  k  e.  om )  ->  ( ( A `  n )  =  ( A `  k )  <-> 
( A `  n
)  =  ( { k }  X.  ( K `  k )
) ) )
156fvmpt2 5956 . . . . . . . . . 10  |-  ( ( n  e.  om  /\  ( { n }  X.  ( K `  n ) )  e.  _V )  ->  ( A `  n
)  =  ( { n }  X.  ( K `  n )
) )
164, 15mpan2 671 . . . . . . . . 9  |-  ( n  e.  om  ->  ( A `  n )  =  ( { n }  X.  ( K `  n ) ) )
1716adantr 465 . . . . . . . 8  |-  ( ( n  e.  om  /\  k  e.  om )  ->  ( A `  n
)  =  ( { n }  X.  ( K `  n )
) )
1817eqeq1d 2469 . . . . . . 7  |-  ( ( n  e.  om  /\  k  e.  om )  ->  ( ( A `  n )  =  ( { k }  X.  ( K `  k ) )  <->  ( { n }  X.  ( K `  n ) )  =  ( { k }  X.  ( K `  k ) ) ) )
19 vex 3116 . . . . . . . . . . 11  |-  n  e. 
_V
2019snnz 4145 . . . . . . . . . 10  |-  { n }  =/=  (/)
21 0ex 4577 . . . . . . . . . . . . . 14  |-  (/)  e.  _V
2221snnz 4145 . . . . . . . . . . . . 13  |-  { (/) }  =/=  (/)
23 iftrue 3945 . . . . . . . . . . . . . 14  |-  ( ( F `  n )  =  (/)  ->  if ( ( F `  n
)  =  (/) ,  { (/)
} ,  ( F `
 n ) )  =  { (/) } )
2423neeq1d 2744 . . . . . . . . . . . . 13  |-  ( ( F `  n )  =  (/)  ->  ( if ( ( F `  n )  =  (/) ,  { (/) } ,  ( F `  n ) )  =/=  (/)  <->  { (/) }  =/=  (/) ) )
2522, 24mpbiri 233 . . . . . . . . . . . 12  |-  ( ( F `  n )  =  (/)  ->  if ( ( F `  n
)  =  (/) ,  { (/)
} ,  ( F `
 n ) )  =/=  (/) )
26 iffalse 3948 . . . . . . . . . . . . 13  |-  ( -.  ( F `  n
)  =  (/)  ->  if ( ( F `  n )  =  (/) ,  { (/) } ,  ( F `  n ) )  =  ( F `
 n ) )
27 df-ne 2664 . . . . . . . . . . . . . 14  |-  ( ( F `  n )  =/=  (/)  <->  -.  ( F `  n )  =  (/) )
2827biimpri 206 . . . . . . . . . . . . 13  |-  ( -.  ( F `  n
)  =  (/)  ->  ( F `  n )  =/=  (/) )
2926, 28eqnetrd 2760 . . . . . . . . . . . 12  |-  ( -.  ( F `  n
)  =  (/)  ->  if ( ( F `  n )  =  (/) ,  { (/) } ,  ( F `  n ) )  =/=  (/) )
3025, 29pm2.61i 164 . . . . . . . . . . 11  |-  if ( ( F `  n
)  =  (/) ,  { (/)
} ,  ( F `
 n ) )  =/=  (/)
31 p0ex 4634 . . . . . . . . . . . . . 14  |-  { (/) }  e.  _V
32 fvex 5875 . . . . . . . . . . . . . 14  |-  ( F `
 n )  e. 
_V
3331, 32ifex 4008 . . . . . . . . . . . . 13  |-  if ( ( F `  n
)  =  (/) ,  { (/)
} ,  ( F `
 n ) )  e.  _V
34 axcc2lem.1 . . . . . . . . . . . . . 14  |-  K  =  ( n  e.  om  |->  if ( ( F `  n )  =  (/) ,  { (/) } ,  ( F `  n ) ) )
3534fvmpt2 5956 . . . . . . . . . . . . 13  |-  ( ( n  e.  om  /\  if ( ( F `  n )  =  (/) ,  { (/) } ,  ( F `  n ) )  e.  _V )  ->  ( K `  n
)  =  if ( ( F `  n
)  =  (/) ,  { (/)
} ,  ( F `
 n ) ) )
3633, 35mpan2 671 . . . . . . . . . . . 12  |-  ( n  e.  om  ->  ( K `  n )  =  if ( ( F `
 n )  =  (/) ,  { (/) } , 
( F `  n
) ) )
3736neeq1d 2744 . . . . . . . . . . 11  |-  ( n  e.  om  ->  (
( K `  n
)  =/=  (/)  <->  if (
( F `  n
)  =  (/) ,  { (/)
} ,  ( F `
 n ) )  =/=  (/) ) )
3830, 37mpbiri 233 . . . . . . . . . 10  |-  ( n  e.  om  ->  ( K `  n )  =/=  (/) )
39 xp11 5441 . . . . . . . . . 10  |-  ( ( { n }  =/=  (/) 
/\  ( K `  n )  =/=  (/) )  -> 
( ( { n }  X.  ( K `  n ) )  =  ( { k }  X.  ( K `  k ) )  <->  ( {
n }  =  {
k }  /\  ( K `  n )  =  ( K `  k ) ) ) )
4020, 38, 39sylancr 663 . . . . . . . . 9  |-  ( n  e.  om  ->  (
( { n }  X.  ( K `  n
) )  =  ( { k }  X.  ( K `  k ) )  <->  ( { n }  =  { k }  /\  ( K `  n )  =  ( K `  k ) ) ) )
4119sneqr 4194 . . . . . . . . . 10  |-  ( { n }  =  {
k }  ->  n  =  k )
4241adantr 465 . . . . . . . . 9  |-  ( ( { n }  =  { k }  /\  ( K `  n )  =  ( K `  k ) )  ->  n  =  k )
4340, 42syl6bi 228 . . . . . . . 8  |-  ( n  e.  om  ->  (
( { n }  X.  ( K `  n
) )  =  ( { k }  X.  ( K `  k ) )  ->  n  =  k ) )
4443adantr 465 . . . . . . 7  |-  ( ( n  e.  om  /\  k  e.  om )  ->  ( ( { n }  X.  ( K `  n ) )  =  ( { k }  X.  ( K `  k ) )  ->  n  =  k )
)
4518, 44sylbid 215 . . . . . 6  |-  ( ( n  e.  om  /\  k  e.  om )  ->  ( ( A `  n )  =  ( { k }  X.  ( K `  k ) )  ->  n  =  k ) )
4614, 45sylbid 215 . . . . 5  |-  ( ( n  e.  om  /\  k  e.  om )  ->  ( ( A `  n )  =  ( A `  k )  ->  n  =  k ) )
4746rgen2a 2891 . . . 4  |-  A. n  e.  om  A. k  e. 
om  ( ( A `
 n )  =  ( A `  k
)  ->  n  =  k )
48 dff13 6153 . . . 4  |-  ( A : om -1-1-> _V  <->  ( A : om --> _V  /\  A. n  e.  om  A. k  e. 
om  ( ( A `
 n )  =  ( A `  k
)  ->  n  =  k ) ) )
498, 47, 48mpbir2an 918 . . 3  |-  A : om
-1-1-> _V
50 f1f1orn 5826 . . . 4  |-  ( A : om -1-1-> _V  ->  A : om -1-1-onto-> ran  A )
511f1oen 7536 . . . 4  |-  ( A : om -1-1-onto-> ran  A  ->  om  ~~  ran  A )
52 ensym 7564 . . . 4  |-  ( om 
~~  ran  A  ->  ran 
A  ~~  om )
5350, 51, 523syl 20 . . 3  |-  ( A : om -1-1-> _V  ->  ran 
A  ~~  om )
546rneqi 5228 . . . . 5  |-  ran  A  =  ran  ( n  e. 
om  |->  ( { n }  X.  ( K `  n ) ) )
55 dmmptg 5503 . . . . . . . 8  |-  ( A. n  e.  om  ( { n }  X.  ( K `  n ) )  e.  _V  ->  dom  ( n  e.  om  |->  ( { n }  X.  ( K `  n ) ) )  =  om )
564a1i 11 . . . . . . . 8  |-  ( n  e.  om  ->  ( { n }  X.  ( K `  n ) )  e.  _V )
5755, 56mprg 2827 . . . . . . 7  |-  dom  (
n  e.  om  |->  ( { n }  X.  ( K `  n ) ) )  =  om
5857, 1eqeltri 2551 . . . . . 6  |-  dom  (
n  e.  om  |->  ( { n }  X.  ( K `  n ) ) )  e.  _V
59 funmpt 5623 . . . . . 6  |-  Fun  (
n  e.  om  |->  ( { n }  X.  ( K `  n ) ) )
60 funrnex 6751 . . . . . 6  |-  ( dom  ( n  e.  om  |->  ( { n }  X.  ( K `  n ) ) )  e.  _V  ->  ( Fun  ( n  e.  om  |->  ( { n }  X.  ( K `  n )
) )  ->  ran  ( n  e.  om  |->  ( { n }  X.  ( K `  n ) ) )  e.  _V ) )
6158, 59, 60mp2 9 . . . . 5  |-  ran  (
n  e.  om  |->  ( { n }  X.  ( K `  n ) ) )  e.  _V
6254, 61eqeltri 2551 . . . 4  |-  ran  A  e.  _V
63 breq1 4450 . . . . 5  |-  ( a  =  ran  A  -> 
( a  ~~  om  <->  ran 
A  ~~  om )
)
64 raleq 3058 . . . . . 6  |-  ( a  =  ran  A  -> 
( A. z  e.  a  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. z  e.  ran  A ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
6564exbidv 1690 . . . . 5  |-  ( a  =  ran  A  -> 
( E. f A. z  e.  a  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  E. f A. z  e.  ran  A ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
6663, 65imbi12d 320 . . . 4  |-  ( a  =  ran  A  -> 
( ( a  ~~  om 
->  E. f A. z  e.  a  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  <->  ( ran  A 
~~  om  ->  E. f A. z  e.  ran  A ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) ) )
67 ax-cc 8814 . . . 4  |-  ( a 
~~  om  ->  E. f A. z  e.  a 
( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
6862, 66, 67vtocl 3165 . . 3  |-  ( ran 
A  ~~  om  ->  E. f A. z  e. 
ran  A ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
6949, 53, 68mp2b 10 . 2  |-  E. f A. z  e.  ran  A ( z  =/=  (/)  ->  (
f `  z )  e.  z )
70 fvex 5875 . . . . 5  |-  ( 2nd `  ( f `  ( A `  n )
) )  e.  _V
71 axcc2lem.3 . . . . 5  |-  G  =  ( n  e.  om  |->  ( 2nd `  ( f `
 ( A `  n ) ) ) )
7270, 71fnmpti 5708 . . . 4  |-  G  Fn  om
73 xpnz 5425 . . . . . . . . . . . . . . . 16  |-  ( ( { n }  =/=  (/) 
/\  ( K `  n )  =/=  (/) )  <->  ( {
n }  X.  ( K `  n )
)  =/=  (/) )
7473biimpi 194 . . . . . . . . . . . . . . 15  |-  ( ( { n }  =/=  (/) 
/\  ( K `  n )  =/=  (/) )  -> 
( { n }  X.  ( K `  n
) )  =/=  (/) )
7520, 38, 74sylancr 663 . . . . . . . . . . . . . 14  |-  ( n  e.  om  ->  ( { n }  X.  ( K `  n ) )  =/=  (/) )
7616, 75eqnetrd 2760 . . . . . . . . . . . . 13  |-  ( n  e.  om  ->  ( A `  n )  =/=  (/) )
774, 6fnmpti 5708 . . . . . . . . . . . . . . 15  |-  A  Fn  om
78 fnfvelrn 6017 . . . . . . . . . . . . . . 15  |-  ( ( A  Fn  om  /\  n  e.  om )  ->  ( A `  n
)  e.  ran  A
)
7977, 78mpan 670 . . . . . . . . . . . . . 14  |-  ( n  e.  om  ->  ( A `  n )  e.  ran  A )
80 neeq1 2748 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( A `  n )  ->  (
z  =/=  (/)  <->  ( A `  n )  =/=  (/) ) )
81 fveq2 5865 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( A `  n )  ->  (
f `  z )  =  ( f `  ( A `  n ) ) )
82 id 22 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( A `  n )  ->  z  =  ( A `  n ) )
8381, 82eleq12d 2549 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( A `  n )  ->  (
( f `  z
)  e.  z  <->  ( f `  ( A `  n
) )  e.  ( A `  n ) ) )
8480, 83imbi12d 320 . . . . . . . . . . . . . . 15  |-  ( z  =  ( A `  n )  ->  (
( z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  ( ( A `  n )  =/=  (/)  ->  ( f `  ( A `  n
) )  e.  ( A `  n ) ) ) )
8584rspccv 3211 . . . . . . . . . . . . . 14  |-  ( A. z  e.  ran  A ( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( A `  n
)  e.  ran  A  ->  ( ( A `  n )  =/=  (/)  ->  (
f `  ( A `  n ) )  e.  ( A `  n
) ) ) )
8679, 85syl5 32 . . . . . . . . . . . . 13  |-  ( A. z  e.  ran  A ( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
n  e.  om  ->  ( ( A `  n
)  =/=  (/)  ->  (
f `  ( A `  n ) )  e.  ( A `  n
) ) ) )
8776, 86mpdi 42 . . . . . . . . . . . 12  |-  ( A. z  e.  ran  A ( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
n  e.  om  ->  ( f `  ( A `
 n ) )  e.  ( A `  n ) ) )
8887impcom 430 . . . . . . . . . . 11  |-  ( ( n  e.  om  /\  A. z  e.  ran  A
( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  -> 
( f `  ( A `  n )
)  e.  ( A `
 n ) )
8916eleq2d 2537 . . . . . . . . . . . 12  |-  ( n  e.  om  ->  (
( f `  ( A `  n )
)  e.  ( A `
 n )  <->  ( f `  ( A `  n
) )  e.  ( { n }  X.  ( K `  n ) ) ) )
9089adantr 465 . . . . . . . . . . 11  |-  ( ( n  e.  om  /\  A. z  e.  ran  A
( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  -> 
( ( f `  ( A `  n ) )  e.  ( A `
 n )  <->  ( f `  ( A `  n
) )  e.  ( { n }  X.  ( K `  n ) ) ) )
9188, 90mpbid 210 . . . . . . . . . 10  |-  ( ( n  e.  om  /\  A. z  e.  ran  A
( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  -> 
( f `  ( A `  n )
)  e.  ( { n }  X.  ( K `  n )
) )
92 xp2nd 6815 . . . . . . . . . 10  |-  ( ( f `  ( A `
 n ) )  e.  ( { n }  X.  ( K `  n ) )  -> 
( 2nd `  (
f `  ( A `  n ) ) )  e.  ( K `  n ) )
9391, 92syl 16 . . . . . . . . 9  |-  ( ( n  e.  om  /\  A. z  e.  ran  A
( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  -> 
( 2nd `  (
f `  ( A `  n ) ) )  e.  ( K `  n ) )
94933adant3 1016 . . . . . . . 8  |-  ( ( n  e.  om  /\  A. z  e.  ran  A
( z  =/=  (/)  ->  (
f `  z )  e.  z )  /\  ( F `  n )  =/=  (/) )  ->  ( 2nd `  ( f `  ( A `  n ) ) )  e.  ( K `  n ) )
9571fvmpt2 5956 . . . . . . . . . . 11  |-  ( ( n  e.  om  /\  ( 2nd `  ( f `
 ( A `  n ) ) )  e.  _V )  -> 
( G `  n
)  =  ( 2nd `  ( f `  ( A `  n )
) ) )
9670, 95mpan2 671 . . . . . . . . . 10  |-  ( n  e.  om  ->  ( G `  n )  =  ( 2nd `  (
f `  ( A `  n ) ) ) )
97963ad2ant1 1017 . . . . . . . . 9  |-  ( ( n  e.  om  /\  A. z  e.  ran  A
( z  =/=  (/)  ->  (
f `  z )  e.  z )  /\  ( F `  n )  =/=  (/) )  ->  ( G `  n )  =  ( 2nd `  (
f `  ( A `  n ) ) ) )
9897eqcomd 2475 . . . . . . . 8  |-  ( ( n  e.  om  /\  A. z  e.  ran  A
( z  =/=  (/)  ->  (
f `  z )  e.  z )  /\  ( F `  n )  =/=  (/) )  ->  ( 2nd `  ( f `  ( A `  n ) ) )  =  ( G `  n ) )
99363ad2ant1 1017 . . . . . . . . 9  |-  ( ( n  e.  om  /\  A. z  e.  ran  A
( z  =/=  (/)  ->  (
f `  z )  e.  z )  /\  ( F `  n )  =/=  (/) )  ->  ( K `  n )  =  if ( ( F `
 n )  =  (/) ,  { (/) } , 
( F `  n
) ) )
100 ifnefalse 3951 . . . . . . . . . 10  |-  ( ( F `  n )  =/=  (/)  ->  if (
( F `  n
)  =  (/) ,  { (/)
} ,  ( F `
 n ) )  =  ( F `  n ) )
1011003ad2ant3 1019 . . . . . . . . 9  |-  ( ( n  e.  om  /\  A. z  e.  ran  A
( z  =/=  (/)  ->  (
f `  z )  e.  z )  /\  ( F `  n )  =/=  (/) )  ->  if ( ( F `  n )  =  (/) ,  { (/) } ,  ( F `  n ) )  =  ( F `
 n ) )
10299, 101eqtrd 2508 . . . . . . . 8  |-  ( ( n  e.  om  /\  A. z  e.  ran  A
( z  =/=  (/)  ->  (
f `  z )  e.  z )  /\  ( F `  n )  =/=  (/) )  ->  ( K `  n )  =  ( F `  n ) )
10394, 98, 1023eltr3d 2569 . . . . . . 7  |-  ( ( n  e.  om  /\  A. z  e.  ran  A
( z  =/=  (/)  ->  (
f `  z )  e.  z )  /\  ( F `  n )  =/=  (/) )  ->  ( G `  n )  e.  ( F `  n
) )
1041033expia 1198 . . . . . 6  |-  ( ( n  e.  om  /\  A. z  e.  ran  A
( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  -> 
( ( F `  n )  =/=  (/)  ->  ( G `  n )  e.  ( F `  n
) ) )
105104expcom 435 . . . . 5  |-  ( A. z  e.  ran  A ( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
n  e.  om  ->  ( ( F `  n
)  =/=  (/)  ->  ( G `  n )  e.  ( F `  n
) ) ) )
106105ralrimiv 2876 . . . 4  |-  ( A. z  e.  ran  A ( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  A. n  e.  om  ( ( F `
 n )  =/=  (/)  ->  ( G `  n )  e.  ( F `  n ) ) )
107 fnex 6126 . . . . . 6  |-  ( ( G  Fn  om  /\  om  e.  _V )  ->  G  e.  _V )
10872, 1, 107mp2an 672 . . . . 5  |-  G  e. 
_V
109 fneq1 5668 . . . . . 6  |-  ( g  =  G  ->  (
g  Fn  om  <->  G  Fn  om ) )
110 fveq1 5864 . . . . . . . . 9  |-  ( g  =  G  ->  (
g `  n )  =  ( G `  n ) )
111110eleq1d 2536 . . . . . . . 8  |-  ( g  =  G  ->  (
( g `  n
)  e.  ( F `
 n )  <->  ( G `  n )  e.  ( F `  n ) ) )
112111imbi2d 316 . . . . . . 7  |-  ( g  =  G  ->  (
( ( F `  n )  =/=  (/)  ->  (
g `  n )  e.  ( F `  n
) )  <->  ( ( F `  n )  =/=  (/)  ->  ( G `  n )  e.  ( F `  n ) ) ) )
113112ralbidv 2903 . . . . . 6  |-  ( g  =  G  ->  ( A. n  e.  om  ( ( F `  n )  =/=  (/)  ->  (
g `  n )  e.  ( F `  n
) )  <->  A. n  e.  om  ( ( F `
 n )  =/=  (/)  ->  ( G `  n )  e.  ( F `  n ) ) ) )
114109, 113anbi12d 710 . . . . 5  |-  ( g  =  G  ->  (
( g  Fn  om  /\ 
A. n  e.  om  ( ( F `  n )  =/=  (/)  ->  (
g `  n )  e.  ( F `  n
) ) )  <->  ( G  Fn  om  /\  A. n  e.  om  ( ( F `
 n )  =/=  (/)  ->  ( G `  n )  e.  ( F `  n ) ) ) ) )
115108, 114spcev 3205 . . . 4  |-  ( ( G  Fn  om  /\  A. n  e.  om  (
( F `  n
)  =/=  (/)  ->  ( G `  n )  e.  ( F `  n
) ) )  ->  E. g ( g  Fn 
om  /\  A. n  e.  om  ( ( F `
 n )  =/=  (/)  ->  ( g `  n )  e.  ( F `  n ) ) ) )
11672, 106, 115sylancr 663 . . 3  |-  ( A. z  e.  ran  A ( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  E. g
( g  Fn  om  /\ 
A. n  e.  om  ( ( F `  n )  =/=  (/)  ->  (
g `  n )  e.  ( F `  n
) ) ) )
117116exlimiv 1698 . 2  |-  ( E. f A. z  e. 
ran  A ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. g
( g  Fn  om  /\ 
A. n  e.  om  ( ( F `  n )  =/=  (/)  ->  (
g `  n )  e.  ( F `  n
) ) ) )
11869, 117ax-mp 5 1  |-  E. g
( g  Fn  om  /\ 
A. n  e.  om  ( ( F `  n )  =/=  (/)  ->  (
g `  n )  e.  ( F `  n
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   A.wral 2814   _Vcvv 3113   (/)c0 3785   ifcif 3939   {csn 4027   class class class wbr 4447    |-> cmpt 4505    X. cxp 4997   dom cdm 4999   ran crn 5000   Fun wfun 5581    Fn wfn 5582   -->wf 5583   -1-1->wf1 5584   -1-1-onto->wf1o 5586   ` cfv 5587   omcom 6679   2ndc2nd 6783    ~~ cen 7513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-inf2 8057  ax-cc 8814
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-om 6680  df-2nd 6785  df-er 7311  df-en 7517
This theorem is referenced by:  axcc2  8816
  Copyright terms: Public domain W3C validator