Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc9lem2 Structured version   Unicode version

Theorem axc9lem2 2013
 Description: Lemma for nfeqf2 2014. This lemma is equivalent to ax13v 1969 with one distinct variable constraint removed. (Contributed by Wolf Lammen, 8-Sep-2018.) (New usage is discouraged.)
Assertion
Ref Expression
axc9lem2
Distinct variable group:   ,

Proof of Theorem axc9lem2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 axc9lem1 1970 . . . 4
2 equequ2 1748 . . . . . . 7
32biimprcd 225 . . . . . 6
43eximi 1635 . . . . 5
5 19.36v 1935 . . . . 5
64, 5sylib 196 . . . 4
71, 6syl9 71 . . 3
87alrimdv 1697 . 2
9 nfv 1683 . . 3
109, 2equsal 2009 . 2
118, 10syl6ib 226 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4  wal 1377  wex 1596 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-12 1803  ax-13 1968 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1597  df-nf 1600 This theorem is referenced by:  nfeqf2  2014
 Copyright terms: Public domain W3C validator