MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc711toc7 Structured version   Unicode version

Theorem axc711toc7 2223
Description: Re-derivation of ax-c7 2193 from axc711 2221. Note that ax-c7 2193 and ax-11 1781 are not used by the re-derivation. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc711toc7  |-  ( -. 
A. x  -.  A. x ph  ->  ph )

Proof of Theorem axc711toc7
StepHypRef Expression
1 hba1-o 2205 . . . . 5  |-  ( A. x ph  ->  A. x A. x ph )
21con3i 135 . . . 4  |-  ( -. 
A. x A. x ph  ->  -.  A. x ph )
32alimi 1605 . . 3  |-  ( A. x  -.  A. x A. x ph  ->  A. x  -.  A. x ph )
43con3i 135 . 2  |-  ( -. 
A. x  -.  A. x ph  ->  -.  A. x  -.  A. x A. x ph )
5 axc711 2221 . 2  |-  ( -. 
A. x  -.  A. x A. x ph  ->  A. x ph )
6 ax-c5 2191 . 2  |-  ( A. x ph  ->  ph )
74, 5, 63syl 20 1  |-  ( -. 
A. x  -.  A. x ph  ->  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-11 1781  ax-c5 2191  ax-c4 2192  ax-c7 2193
This theorem is referenced by:  axc711to11  2224
  Copyright terms: Public domain W3C validator