MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc5c711toc7 Structured version   Unicode version

Theorem axc5c711toc7 2251
Description: Re-derivation of ax-c7 2217 from axc5c711 2249. Note that ax-c7 2217 and ax-11 1843 are not used by the re-derivation. The use of alimi 1634 (which uses ax-c5 2215) is allowed since we have already proved axc5c711toc5 2250. (Contributed by NM, 19-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc5c711toc7  |-  ( -. 
A. x  -.  A. x ph  ->  ph )

Proof of Theorem axc5c711toc7
StepHypRef Expression
1 hba1-o 2229 . . . . . 6  |-  ( A. x ph  ->  A. x A. x ph )
21con3i 135 . . . . 5  |-  ( -. 
A. x A. x ph  ->  -.  A. x ph )
32alimi 1634 . . . 4  |-  ( A. x  -.  A. x A. x ph  ->  A. x  -.  A. x ph )
43sps-o 2239 . . 3  |-  ( A. x A. x  -.  A. x A. x ph  ->  A. x  -.  A. x ph )
54con3i 135 . 2  |-  ( -. 
A. x  -.  A. x ph  ->  -.  A. x A. x  -.  A. x A. x ph )
6 pm2.21 108 . 2  |-  ( -. 
A. x A. x  -.  A. x A. x ph  ->  ( A. x A. x  -.  A. x A. x ph  ->  A. x ph ) )
7 axc5c711 2249 . 2  |-  ( ( A. x A. x  -.  A. x A. x ph  ->  A. x ph )  ->  ph )
85, 6, 73syl 20 1  |-  ( -. 
A. x  -.  A. x ph  ->  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-11 1843  ax-c5 2215  ax-c4 2216  ax-c7 2217
This theorem is referenced by:  axc5c711to11  2252
  Copyright terms: Public domain W3C validator