Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc5c711to11 Structured version   Unicode version

Theorem axc5c711to11 2252
 Description: Re-derivation of ax-11 1843 from axc5c711 2249. Note that ax-c7 2217 and ax-11 1843 are not used by the re-derivation. The use of alimi 1634 (which uses ax-c5 2215) is allowed since we have already proved axc5c711toc5 2250. (Contributed by NM, 19-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc5c711to11

Proof of Theorem axc5c711to11
StepHypRef Expression
1 axc5c711toc7 2251 . . 3
21con4i 130 . 2
3 pm2.21 108 . . . . . 6
4 axc5c711 2249 . . . . . 6
53, 4syl 16 . . . . 5
65alimi 1634 . . . 4
7 axc5c711toc7 2251 . . . 4
86, 7nsyl4 142 . . 3
98alimi 1634 . 2
102, 9syl 16 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4  wal 1393 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-11 1843  ax-c5 2215  ax-c4 2216  ax-c7 2217 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator