MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc5c711 Structured version   Unicode version

Theorem axc5c711 2241
Description: Proof of a single axiom that can replace ax-c5 2207, ax-c7 2209, and ax-11 1791 in a subsystem that includes these axioms plus ax-c4 2208 and ax-gen 1601 (and propositional calculus). See axc5c711toc5 2242, axc5c711toc7 2243, and axc5c711to11 2244 for the re-derivation of those axioms. This theorem extends the idea in Scott Fenton's axc5c7 2234. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc5c711  |-  ( ( A. x A. y  -.  A. x A. y ph  ->  A. x ph )  ->  ph )

Proof of Theorem axc5c711
StepHypRef Expression
1 ax-c5 2207 . . 3  |-  ( A. y ph  ->  ph )
2 ax10 2219 . . . 4  |-  ( -. 
A. y ph  ->  A. y  -.  A. y ph )
3 ax-c7 2209 . . . . . 6  |-  ( -. 
A. x  -.  A. x A. y ph  ->  A. y ph )
43con1i 129 . . . . 5  |-  ( -. 
A. y ph  ->  A. x  -.  A. x A. y ph )
54alimi 1614 . . . 4  |-  ( A. y  -.  A. y ph  ->  A. y A. x  -.  A. x A. y ph )
6 ax-11 1791 . . . 4  |-  ( A. y A. x  -.  A. x A. y ph  ->  A. x A. y  -. 
A. x A. y ph )
72, 5, 63syl 20 . . 3  |-  ( -. 
A. y ph  ->  A. x A. y  -. 
A. x A. y ph )
81, 7nsyl4 142 . 2  |-  ( -. 
A. x A. y  -.  A. x A. y ph  ->  ph )
9 ax-c5 2207 . 2  |-  ( A. x ph  ->  ph )
108, 9ja 161 1  |-  ( ( A. x A. y  -.  A. x A. y ph  ->  A. x ph )  ->  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-11 1791  ax-c5 2207  ax-c4 2208  ax-c7 2209
This theorem is referenced by:  axc5c711toc5  2242  axc5c711toc7  2243  axc5c711to11  2244
  Copyright terms: Public domain W3C validator