Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc5c4c711toc7 Structured version   Unicode version

Theorem axc5c4c711toc7 29799
Description: Re-derivation of axc7 1798 from axc5c4c711 29796. Note that neither axc7 1798 nor ax-11 1782 are required for the re-derivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc5c4c711toc7  |-  ( -. 
A. x  -.  A. x ph  ->  ph )

Proof of Theorem axc5c4c711toc7
StepHypRef Expression
1 ax-1 6 . . . . . . . 8  |-  ( ph  ->  ( A. x (
ph  ->  ph )  ->  ph )
)
21alimi 1605 . . . . . . 7  |-  ( A. x ph  ->  A. x
( A. x (
ph  ->  ph )  ->  ph )
)
32axc4i 1834 . . . . . 6  |-  ( A. x ph  ->  A. x A. x ( A. x
( ph  ->  ph )  ->  ph ) )
43con3i 135 . . . . 5  |-  ( -. 
A. x A. x
( A. x (
ph  ->  ph )  ->  ph )  ->  -.  A. x ph )
54alimi 1605 . . . 4  |-  ( A. x  -.  A. x A. x ( A. x
( ph  ->  ph )  ->  ph )  ->  A. x  -.  A. x ph )
65sps 1802 . . 3  |-  ( A. x A. x  -.  A. x A. x ( A. x ( ph  ->  ph )  ->  ph )  ->  A. x  -.  A. x ph )
76con3i 135 . 2  |-  ( -. 
A. x  -.  A. x ph  ->  -.  A. x A. x  -.  A. x A. x ( A. x
( ph  ->  ph )  ->  ph ) )
8 pm2.21 108 . . . 4  |-  ( -. 
A. x A. x  -.  A. x A. x
( A. x (
ph  ->  ph )  ->  ph )  ->  ( A. x A. x  -.  A. x A. x ( A. x
( ph  ->  ph )  ->  ph )  ->  (
( ph  ->  ph )  ->  A. x ( A. x ( ph  ->  ph )  ->  ph ) ) ) )
9 axc5c4c711 29796 . . . 4  |-  ( ( A. x A. x  -.  A. x A. x
( A. x (
ph  ->  ph )  ->  ph )  ->  ( ( ph  ->  ph )  ->  A. x
( A. x (
ph  ->  ph )  ->  ph )
) )  ->  ( A. x ( ph  ->  ph )  ->  A. x ph ) )
108, 9syl 16 . . 3  |-  ( -. 
A. x A. x  -.  A. x A. x
( A. x (
ph  ->  ph )  ->  ph )  ->  ( A. x (
ph  ->  ph )  ->  A. x ph ) )
11 sp 1796 . . 3  |-  ( A. x ph  ->  ph )
1210, 11syl6 33 . 2  |-  ( -. 
A. x A. x  -.  A. x A. x
( A. x (
ph  ->  ph )  ->  ph )  ->  ( A. x (
ph  ->  ph )  ->  ph )
)
13 pm2.27 39 . . 3  |-  ( A. x ( ph  ->  ph )  ->  ( ( A. x ( ph  ->  ph )  ->  ph )  ->  ph ) )
14 id 22 . . 3  |-  ( ph  ->  ph )
1513, 14mpg 1594 . 2  |-  ( ( A. x ( ph  ->  ph )  ->  ph )  ->  ph )
167, 12, 153syl 20 1  |-  ( -. 
A. x  -.  A. x ph  ->  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794
This theorem depends on definitions:  df-bi 185  df-ex 1588  df-nf 1591
This theorem is referenced by:  axc5c4c711to11  29800
  Copyright terms: Public domain W3C validator