Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc5c4c711toc7 Structured version   Unicode version

Theorem axc5c4c711toc7 36619
Description: Re-derivation of axc7 1913 from axc5c4c711 36616. Note that neither axc7 1913 nor ax-11 1893 are required for the re-derivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc5c4c711toc7  |-  ( -. 
A. x  -.  A. x ph  ->  ph )

Proof of Theorem axc5c4c711toc7
StepHypRef Expression
1 ax-1 6 . . . . . . . 8  |-  ( ph  ->  ( A. x (
ph  ->  ph )  ->  ph )
)
21alimi 1681 . . . . . . 7  |-  ( A. x ph  ->  A. x
( A. x (
ph  ->  ph )  ->  ph )
)
32axc4i 1954 . . . . . 6  |-  ( A. x ph  ->  A. x A. x ( A. x
( ph  ->  ph )  ->  ph ) )
43con3i 141 . . . . 5  |-  ( -. 
A. x A. x
( A. x (
ph  ->  ph )  ->  ph )  ->  -.  A. x ph )
54alimi 1681 . . . 4  |-  ( A. x  -.  A. x A. x ( A. x
( ph  ->  ph )  ->  ph )  ->  A. x  -.  A. x ph )
65sps 1917 . . 3  |-  ( A. x A. x  -.  A. x A. x ( A. x ( ph  ->  ph )  ->  ph )  ->  A. x  -.  A. x ph )
76con3i 141 . 2  |-  ( -. 
A. x  -.  A. x ph  ->  -.  A. x A. x  -.  A. x A. x ( A. x
( ph  ->  ph )  ->  ph ) )
8 pm2.21 112 . . . 4  |-  ( -. 
A. x A. x  -.  A. x A. x
( A. x (
ph  ->  ph )  ->  ph )  ->  ( A. x A. x  -.  A. x A. x ( A. x
( ph  ->  ph )  ->  ph )  ->  (
( ph  ->  ph )  ->  A. x ( A. x ( ph  ->  ph )  ->  ph ) ) ) )
9 axc5c4c711 36616 . . . 4  |-  ( ( A. x A. x  -.  A. x A. x
( A. x (
ph  ->  ph )  ->  ph )  ->  ( ( ph  ->  ph )  ->  A. x
( A. x (
ph  ->  ph )  ->  ph )
) )  ->  ( A. x ( ph  ->  ph )  ->  A. x ph ) )
108, 9syl 17 . . 3  |-  ( -. 
A. x A. x  -.  A. x A. x
( A. x (
ph  ->  ph )  ->  ph )  ->  ( A. x (
ph  ->  ph )  ->  A. x ph ) )
11 sp 1911 . . 3  |-  ( A. x ph  ->  ph )
1210, 11syl6 35 . 2  |-  ( -. 
A. x A. x  -.  A. x A. x
( A. x (
ph  ->  ph )  ->  ph )  ->  ( A. x (
ph  ->  ph )  ->  ph )
)
13 pm2.27 41 . . 3  |-  ( A. x ( ph  ->  ph )  ->  ( ( A. x ( ph  ->  ph )  ->  ph )  ->  ph ) )
14 id 23 . . 3  |-  ( ph  ->  ph )
1513, 14mpg 1668 . 2  |-  ( ( A. x ( ph  ->  ph )  ->  ph )  ->  ph )
167, 12, 153syl 18 1  |-  ( -. 
A. x  -.  A. x ph  ->  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-10 1888  ax-11 1893  ax-12 1906
This theorem depends on definitions:  df-bi 189  df-ex 1661  df-nf 1665
This theorem is referenced by:  axc5c4c711to11  36620
  Copyright terms: Public domain W3C validator