Mathbox for Andrew Salmon < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc5c4c711toc7 Structured version   Visualization version   Unicode version

Theorem axc5c4c711toc7 36755
 Description: Re-derivation of axc7 1939 from axc5c4c711 36752. Note that neither axc7 1939 nor ax-11 1920 are required for the re-derivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc5c4c711toc7

Proof of Theorem axc5c4c711toc7
StepHypRef Expression
1 ax-1 6 . . . . . . . 8
21alimi 1684 . . . . . . 7
32axc4i 1980 . . . . . 6
43con3i 141 . . . . 5
54alimi 1684 . . . 4
65sps 1943 . . 3
76con3i 141 . 2
8 pm2.21 112 . . . 4
9 axc5c4c711 36752 . . . 4
108, 9syl 17 . . 3
11 sp 1937 . . 3
1210, 11syl6 34 . 2
13 pm2.27 40 . . 3
14 id 22 . . 3
1513, 14mpg 1671 . 2
167, 12, 153syl 18 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4  wal 1442 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933 This theorem depends on definitions:  df-bi 189  df-an 373  df-ex 1664  df-nf 1668 This theorem is referenced by:  axc5c4c711to11  36756
 Copyright terms: Public domain W3C validator