Mathbox for Andrew Salmon < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc5c4c711to11 Structured version   Unicode version

Theorem axc5c4c711to11 36613
 Description: Re-derivation of ax-11 1892 from axc5c4c711 36609. Note that ax-11 1892 is not required for the re-derivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc5c4c711to11

Proof of Theorem axc5c4c711to11
StepHypRef Expression
1 ax-1 6 . . 3
212alimi 1681 . 2
3 axc5c4c711toc7 36612 . . . 4
43con4i 133 . . 3
5 pm2.21 111 . . . . . . 7
6 axc5c4c711 36609 . . . . . . . 8
7 sp 1910 . . . . . . . 8
86, 7syl6 34 . . . . . . 7
95, 8syl 17 . . . . . 6
109alimi 1680 . . . . 5
11 axc5c4c711toc7 36612 . . . . 5
1210, 11nsyl4 147 . . . 4
1312alimi 1680 . . 3
144, 13syl 17 . 2
15 pm2.27 40 . . . 4
16 id 23 . . . 4
1715, 16mpg 1667 . . 3
18172alimi 1681 . 2
192, 14, 183syl 18 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4  wal 1435 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-10 1887  ax-11 1892  ax-12 1905 This theorem depends on definitions:  df-bi 188  df-ex 1660  df-nf 1664 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator