Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc5 Structured version   Visualization version   Unicode version

Theorem axc5 32509
Description: This theorem repeats sp 1947 under the name axc5 32509, so that the metamath program's "verify markup" command will check that it matches axiom scheme ax-c5 32499. It is preferred that references to this theorem use the name sp 1947. (Contributed by NM, 18-Aug-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
axc5  |-  ( A. x ph  ->  ph )

Proof of Theorem axc5
StepHypRef Expression
1 sp 1947 1  |-  ( A. x ph  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-12 1943
This theorem depends on definitions:  df-bi 190  df-an 377  df-ex 1674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator