MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc4i Structured version   Unicode version

Theorem axc4i 1957
Description: Inference version of axc4 1915. (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
axc4i.1  |-  ( A. x ph  ->  ps )
Assertion
Ref Expression
axc4i  |-  ( A. x ph  ->  A. x ps )

Proof of Theorem axc4i
StepHypRef Expression
1 nfa1 1956 . 2  |-  F/ x A. x ph
2 axc4i.1 . 2  |-  ( A. x ph  ->  ps )
31, 2alrimi 1932 1  |-  ( A. x ph  ->  A. x ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-12 1909
This theorem depends on definitions:  df-bi 188  df-ex 1658  df-nf 1662
This theorem is referenced by:  hbae  2115  hbsb2  2157  hbsb2a  2159  hbsb2e  2160  reu6  3195  axunndlem1  8964  axacndlem3  8978  axacndlem5  8980  axacnd  8981  bj-nfs1t  31211  bj-hbsb2v  31275  bj-hbsb2av  31277  bj-hbaeb2  31327  frege93  36459  pm11.57  36646  pm11.59  36648  axc5c4c711toc7  36662  axc11next  36664  hbalg  36829  ax6e2eq  36831  ax6e2eqVD  37214
  Copyright terms: Public domain W3C validator