MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc4i-o Structured version   Unicode version

Theorem axc4i-o 2207
Description: Inference version of ax-c4 2193. (Contributed by NM, 3-Jan-1993.) (New usage is discouraged.)
Hypothesis
Ref Expression
axc4i-o.1  |-  ( A. x ph  ->  ps )
Assertion
Ref Expression
axc4i-o  |-  ( A. x ph  ->  A. x ps )

Proof of Theorem axc4i-o
StepHypRef Expression
1 hba1-o 2206 . 2  |-  ( A. x ph  ->  A. x A. x ph )
2 axc4i-o.1 . 2  |-  ( A. x ph  ->  ps )
31, 2alrimih 1613 1  |-  ( A. x ph  ->  A. x ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-c5 2192  ax-c4 2193  ax-c7 2194
This theorem is referenced by:  hbae-o  2210  aev-o  2239  axc11n-16  2246  ax12indalem  2253  ax12inda2ALT  2254
  Copyright terms: Public domain W3C validator