Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc4 Structured version   Visualization version   Unicode version

Theorem axc4 1958
 Description: Show that the original axiom ax-c4 32520 can be derived from ax-4 1690 and others. See ax4 32530 for the rederivation of ax-4 1690 from ax-c4 32520. Part of the proof is based on the proof of Lemma 22 of [Monk2] p. 114. (Contributed by NM, 21-May-2008.) (Proof modification is discouraged.)
Assertion
Ref Expression
axc4

Proof of Theorem axc4
StepHypRef Expression
1 sp 1957 . . . 4
21con2i 124 . . 3
3 hbn1 1933 . . 3
4 hbn1 1933 . . . . 5
54con1i 134 . . . 4
65alimi 1692 . . 3
72, 3, 63syl 18 . 2
8 alim 1691 . 2
97, 8syl5 32 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4  wal 1450 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-12 1950 This theorem depends on definitions:  df-bi 190  df-ex 1672 This theorem is referenced by:  axc5c4c711  36822
 Copyright terms: Public domain W3C validator