![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axc16g | Structured version Visualization version Unicode version |
Description: Generalization of axc16 2028. Use the latter when sufficient. (Contributed by NM, 15-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 18-Feb-2018.) Remove dependency on ax-13 2091, along an idea of BJ. (Revised by Wolf Lammen, 30-Nov-2019.) |
Ref | Expression |
---|---|
axc16g |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aevlem1 2026 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ax-5 1761 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | axc112 2024 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2im 39 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1672 ax-4 1685 ax-5 1761 ax-6 1808 ax-7 1854 ax-12 1936 |
This theorem depends on definitions: df-bi 190 df-an 377 df-ex 1667 |
This theorem is referenced by: axc16 2028 axc16gb 2029 aev 2030 axc16nfALT 2157 |
Copyright terms: Public domain | W3C validator |