MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc16ALT Structured version   Visualization version   Unicode version

Theorem axc16ALT 2206
Description: Alternate proof of axc16 2035, shorter but requiring ax-11 1931 and using df-sb 1809. (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc16ALT  |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem axc16ALT
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sbequ12 2094 . 2  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
2 ax-5 1769 . . 3  |-  ( ph  ->  A. z ph )
32hbsb3 2204 . 2  |-  ( [ z  /  x ] ph  ->  A. x [ z  /  x ] ph )
41, 3axc16i 2167 1  |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1453   [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102
This theorem depends on definitions:  df-bi 190  df-an 377  df-ex 1675  df-nf 1679  df-sb 1809
This theorem is referenced by:  axc16gALT  2207
  Copyright terms: Public domain W3C validator