Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc11nfromc11 Structured version   Unicode version

Theorem axc11nfromc11 32409
Description: Rederivation of ax-c11n 32372 from original version ax-c11 32371. See theorem axc11 2120 for the derivation of ax-c11 32371 from ax-c11n 32372.

This theorem should not be referenced in any proof. Instead, use ax-c11n 32372 above so that uses of ax-c11n 32372 can be more easily identified, or use aecom-o 32383 when this form is needed for studies involving ax-c11 32371 and omitting ax-5 1752. (Contributed by NM, 16-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)

Assertion
Ref Expression
axc11nfromc11  |-  ( A. x  x  =  y  ->  A. y  y  =  x )

Proof of Theorem axc11nfromc11
StepHypRef Expression
1 ax-c11 32371 . . 3  |-  ( A. x  x  =  y  ->  ( A. x  x  =  y  ->  A. y  x  =  y )
)
21pm2.43i 49 . 2  |-  ( A. x  x  =  y  ->  A. y  x  =  y )
3 equcomi 1847 . . 3  |-  ( x  =  y  ->  y  =  x )
43alimi 1678 . 2  |-  ( A. y  x  =  y  ->  A. y  y  =  x )
52, 4syl 17 1  |-  ( A. x  x  =  y  ->  A. y  y  =  x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-c11 32371
This theorem depends on definitions:  df-bi 188  df-ex 1658
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator