![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axc112 | Structured version Visualization version Unicode version |
Description: Same as axc11 2147 but with reversed antecedent. (Contributed by NM, 25-Jul-2015.) |
Ref | Expression |
---|---|
axc112 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-12 1932 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | sps 1942 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | pm2.27 40 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | al2imi 1686 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | syld 45 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1668 ax-4 1681 ax-5 1757 ax-6 1804 ax-7 1850 ax-12 1932 |
This theorem depends on definitions: df-bi 189 df-an 373 df-ex 1663 |
This theorem is referenced by: axc16g 2022 axc11n 2142 axc11nALT 2143 axc11 2147 hbae 2148 dral1 2158 dral1ALT 2159 axpowndlem3 9021 bj-axc11nv 31341 bj-axc11v 31344 bj-dral1v 31351 bj-hbaeb2 31413 |
Copyright terms: Public domain | W3C validator |