MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axbnd Structured version   Visualization version   Unicode version

Theorem axbnd 2441
Description: Axiom of Bundling (intuitionistic logic axiom ax-bnd). In classical logic, this and axi12 2440 are fairly straightforward consequences of axc9 2151. But in intuitionistic logic, it is not easy to add the extra  A. x to axi12 2440 and so we treat the two as separate axioms. (Contributed by Jim Kingdon, 22-Mar-2018.)
Assertion
Ref Expression
axbnd  |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. x A. z ( x  =  y  ->  A. z  x  =  y )
) )

Proof of Theorem axbnd
StepHypRef Expression
1 nfnae 2163 . . . . . 6  |-  F/ x  -.  A. z  z  =  x
2 nfnae 2163 . . . . . 6  |-  F/ x  -.  A. z  z  =  y
31, 2nfan 2022 . . . . 5  |-  F/ x
( -.  A. z 
z  =  x  /\  -.  A. z  z  =  y )
4 nfnae 2163 . . . . . . 7  |-  F/ z  -.  A. z  z  =  x
5 nfnae 2163 . . . . . . 7  |-  F/ z  -.  A. z  z  =  y
64, 5nfan 2022 . . . . . 6  |-  F/ z ( -.  A. z 
z  =  x  /\  -.  A. z  z  =  y )
7 axc9 2151 . . . . . . 7  |-  ( -. 
A. z  z  =  x  ->  ( -.  A. z  z  =  y  ->  ( x  =  y  ->  A. z  x  =  y )
) )
87imp 435 . . . . . 6  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  ( x  =  y  ->  A. z  x  =  y )
)
96, 8alrimi 1966 . . . . 5  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  A. z
( x  =  y  ->  A. z  x  =  y ) )
103, 9alrimi 1966 . . . 4  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  A. x A. z ( x  =  y  ->  A. z  x  =  y )
)
1110ex 440 . . 3  |-  ( -. 
A. z  z  =  x  ->  ( -.  A. z  z  =  y  ->  A. x A. z
( x  =  y  ->  A. z  x  =  y ) ) )
1211orrd 384 . 2  |-  ( -. 
A. z  z  =  x  ->  ( A. z  z  =  y  \/  A. x A. z
( x  =  y  ->  A. z  x  =  y ) ) )
1312orri 382 1  |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. x A. z ( x  =  y  ->  A. z  x  =  y )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 374    /\ wa 375   A.wal 1453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-ex 1675  df-nf 1679
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator