MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axaddf Structured version   Unicode version

Theorem axaddf 9511
Description: Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl 9517. This construction-dependent theorem should not be referenced directly; instead, use ax-addf 9560. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.)
Assertion
Ref Expression
axaddf  |-  +  :
( CC  X.  CC )
--> CC

Proof of Theorem axaddf
Dummy variables  x  y  z  w  v  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 moeq 3272 . . . . . . . . 9  |-  E* z 
z  =  <. (
w  +R  u ) ,  ( v  +R  f ) >.
21mosubop 4739 . . . . . . . 8  |-  E* z E. u E. f ( y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )
32mosubop 4739 . . . . . . 7  |-  E* z E. w E. v ( x  =  <. w ,  v >.  /\  E. u E. f ( y  =  <. u ,  f
>.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
)
4 anass 649 . . . . . . . . . . 11  |-  ( ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )  <->  ( x  = 
<. w ,  v >.  /\  ( y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) )
542exbii 1640 . . . . . . . . . 10  |-  ( E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )  <->  E. u E. f
( x  =  <. w ,  v >.  /\  (
y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) )
6 19.42vv 1944 . . . . . . . . . 10  |-  ( E. u E. f ( x  =  <. w ,  v >.  /\  (
y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) )  <->  ( x  =  <. w ,  v
>.  /\  E. u E. f ( y  = 
<. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) )
75, 6bitri 249 . . . . . . . . 9  |-  ( E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )  <->  ( x  = 
<. w ,  v >.  /\  E. u E. f
( y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) )
872exbii 1640 . . . . . . . 8  |-  ( E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )  <->  E. w E. v
( x  =  <. w ,  v >.  /\  E. u E. f ( y  =  <. u ,  f
>.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) )
98mobii 2294 . . . . . . 7  |-  ( E* z E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )  <->  E* z E. w E. v ( x  = 
<. w ,  v >.  /\  E. u E. f
( y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) )
103, 9mpbir 209 . . . . . 6  |-  E* z E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )
1110moani 2341 . . . . 5  |-  E* z
( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
)
1211funoprab 6377 . . . 4  |-  Fun  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
13 df-add 9492 . . . . 5  |-  +  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
1413funeqi 5599 . . . 4  |-  ( Fun 
+  <->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) } )
1512, 14mpbir 209 . . 3  |-  Fun  +
1613dmeqi 5195 . . . . 5  |-  dom  +  =  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) }
17 dmoprabss 6359 . . . . 5  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }  C_  ( CC  X.  CC )
1816, 17eqsstri 3527 . . . 4  |-  dom  +  C_  ( CC  X.  CC )
19 0ncn 9499 . . . . 5  |-  -.  (/)  e.  CC
20 df-c 9487 . . . . . . 7  |-  CC  =  ( R.  X.  R. )
21 oveq1 6282 . . . . . . . 8  |-  ( <.
z ,  w >.  =  x  ->  ( <. z ,  w >.  +  <. v ,  u >. )  =  ( x  +  <. v ,  u >. ) )
2221eleq1d 2529 . . . . . . 7  |-  ( <.
z ,  w >.  =  x  ->  ( ( <. z ,  w >.  + 
<. v ,  u >. )  e.  ( R.  X.  R. )  <->  ( x  +  <. v ,  u >. )  e.  ( R.  X.  R. ) ) )
23 oveq2 6283 . . . . . . . 8  |-  ( <.
v ,  u >.  =  y  ->  ( x  +  <. v ,  u >. )  =  ( x  +  y ) )
2423eleq1d 2529 . . . . . . 7  |-  ( <.
v ,  u >.  =  y  ->  ( (
x  +  <. v ,  u >. )  e.  ( R.  X.  R. )  <->  ( x  +  y )  e.  ( R.  X.  R. ) ) )
25 addcnsr 9501 . . . . . . . 8  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( <. z ,  w >.  +  <. v ,  u >. )  =  <. ( z  +R  v ) ,  ( w  +R  u )
>. )
26 addclsr 9449 . . . . . . . . . . 11  |-  ( ( z  e.  R.  /\  v  e.  R. )  ->  ( z  +R  v
)  e.  R. )
27 addclsr 9449 . . . . . . . . . . 11  |-  ( ( w  e.  R.  /\  u  e.  R. )  ->  ( w  +R  u
)  e.  R. )
2826, 27anim12i 566 . . . . . . . . . 10  |-  ( ( ( z  e.  R.  /\  v  e.  R. )  /\  ( w  e.  R.  /\  u  e.  R. )
)  ->  ( (
z  +R  v )  e.  R.  /\  (
w  +R  u )  e.  R. ) )
2928an4s 823 . . . . . . . . 9  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
z  +R  v )  e.  R.  /\  (
w  +R  u )  e.  R. ) )
30 opelxpi 5023 . . . . . . . . 9  |-  ( ( ( z  +R  v
)  e.  R.  /\  ( w  +R  u
)  e.  R. )  -> 
<. ( z  +R  v
) ,  ( w  +R  u ) >.  e.  ( R.  X.  R. ) )
3129, 30syl 16 . . . . . . . 8  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  <. ( z  +R  v ) ,  ( w  +R  u
) >.  e.  ( R. 
X.  R. ) )
3225, 31eqeltrd 2548 . . . . . . 7  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( <. z ,  w >.  +  <. v ,  u >. )  e.  ( R.  X.  R. ) )
3320, 22, 24, 322optocl 5068 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  ( R. 
X.  R. ) )
3433, 20syl6eleqr 2559 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
3519, 34oprssdm 6431 . . . 4  |-  ( CC 
X.  CC )  C_  dom  +
3618, 35eqssi 3513 . . 3  |-  dom  +  =  ( CC  X.  CC )
37 df-fn 5582 . . 3  |-  (  +  Fn  ( CC  X.  CC )  <->  ( Fun  +  /\  dom  +  =  ( CC  X.  CC ) ) )
3815, 36, 37mpbir2an 913 . 2  |-  +  Fn  ( CC  X.  CC )
3934rgen2a 2884 . 2  |-  A. x  e.  CC  A. y  e.  CC  ( x  +  y )  e.  CC
40 ffnov 6381 . 2  |-  (  +  : ( CC  X.  CC ) --> CC  <->  (  +  Fn  ( CC  X.  CC )  /\  A. x  e.  CC  A. y  e.  CC  ( x  +  y )  e.  CC ) )
4138, 39, 40mpbir2an 913 1  |-  +  :
( CC  X.  CC )
--> CC
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1374   E.wex 1591    e. wcel 1762   E*wmo 2269   A.wral 2807   <.cop 4026    X. cxp 4990   dom cdm 4992   Fun wfun 5573    Fn wfn 5574   -->wf 5575  (class class class)co 6275   {coprab 6276   R.cnr 9232    +R cplr 9236   CCcc 9479    + caddc 9484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-omul 7125  df-er 7301  df-ec 7303  df-qs 7307  df-ni 9239  df-pli 9240  df-mi 9241  df-lti 9242  df-plpq 9275  df-mpq 9276  df-ltpq 9277  df-enq 9278  df-nq 9279  df-erq 9280  df-plq 9281  df-mq 9282  df-1nq 9283  df-rq 9284  df-ltnq 9285  df-np 9348  df-plp 9350  df-ltp 9352  df-enr 9422  df-nr 9423  df-plr 9424  df-c 9487  df-add 9492
This theorem is referenced by:  axaddcl  9517
  Copyright terms: Public domain W3C validator