MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axaddass Structured version   Unicode version

Theorem axaddass 9581
Description: Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom 9 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 9605 be used later. Instead, use addass 9627. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axaddass  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )

Proof of Theorem axaddass
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 9567 . 2  |-  CC  =  ( ( R.  X.  R. ) /. `'  _E  )
2 addcnsrec 9568 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( [ <. x ,  y >. ] `'  _E  +  [ <. z ,  w >. ] `'  _E  )  =  [ <. ( x  +R  z ) ,  ( y  +R  w )
>. ] `'  _E  )
3 addcnsrec 9568 . 2  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( [ <. z ,  w >. ] `'  _E  +  [ <. v ,  u >. ] `'  _E  )  =  [ <. ( z  +R  v
) ,  ( w  +R  u ) >. ] `'  _E  )
4 addcnsrec 9568 . 2  |-  ( ( ( ( x  +R  z )  e.  R.  /\  ( y  +R  w
)  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( [ <. ( x  +R  z
) ,  ( y  +R  w ) >. ] `'  _E  +  [ <. v ,  u >. ] `'  _E  )  =  [ <. ( ( x  +R  z )  +R  v ) ,  ( ( y  +R  w
)  +R  u )
>. ] `'  _E  )
5 addcnsrec 9568 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( ( z  +R  v )  e.  R.  /\  ( w  +R  u
)  e.  R. )
)  ->  ( [ <. x ,  y >. ] `'  _E  +  [ <. ( z  +R  v ) ,  ( w  +R  u )
>. ] `'  _E  )  =  [ <. ( x  +R  ( z  +R  v
) ) ,  ( y  +R  ( w  +R  u ) )
>. ] `'  _E  )
6 addclsr 9508 . . . 4  |-  ( ( x  e.  R.  /\  z  e.  R. )  ->  ( x  +R  z
)  e.  R. )
7 addclsr 9508 . . . 4  |-  ( ( y  e.  R.  /\  w  e.  R. )  ->  ( y  +R  w
)  e.  R. )
86, 7anim12i 568 . . 3  |-  ( ( ( x  e.  R.  /\  z  e.  R. )  /\  ( y  e.  R.  /\  w  e.  R. )
)  ->  ( (
x  +R  z )  e.  R.  /\  (
y  +R  w )  e.  R. ) )
98an4s 833 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
x  +R  z )  e.  R.  /\  (
y  +R  w )  e.  R. ) )
10 addclsr 9508 . . . 4  |-  ( ( z  e.  R.  /\  v  e.  R. )  ->  ( z  +R  v
)  e.  R. )
11 addclsr 9508 . . . 4  |-  ( ( w  e.  R.  /\  u  e.  R. )  ->  ( w  +R  u
)  e.  R. )
1210, 11anim12i 568 . . 3  |-  ( ( ( z  e.  R.  /\  v  e.  R. )  /\  ( w  e.  R.  /\  u  e.  R. )
)  ->  ( (
z  +R  v )  e.  R.  /\  (
w  +R  u )  e.  R. ) )
1312an4s 833 . 2  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
z  +R  v )  e.  R.  /\  (
w  +R  u )  e.  R. ) )
14 addasssr 9513 . 2  |-  ( ( x  +R  z )  +R  v )  =  ( x  +R  (
z  +R  v ) )
15 addasssr 9513 . 2  |-  ( ( y  +R  w )  +R  u )  =  ( y  +R  (
w  +R  u ) )
161, 2, 3, 4, 5, 9, 13, 14, 15ecovass 7475 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868    _E cep 4759   `'ccnv 4849  (class class class)co 6302   R.cnr 9291    +R cplr 9295   CCcc 9538    + caddc 9543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594  ax-inf2 8149
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4761  df-id 4765  df-po 4771  df-so 4772  df-fr 4809  df-we 4811  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-pred 5396  df-ord 5442  df-on 5443  df-lim 5444  df-suc 5445  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-om 6704  df-1st 6804  df-2nd 6805  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-oadd 7191  df-omul 7192  df-er 7368  df-ec 7370  df-qs 7374  df-ni 9298  df-pli 9299  df-mi 9300  df-lti 9301  df-plpq 9334  df-mpq 9335  df-ltpq 9336  df-enq 9337  df-nq 9338  df-erq 9339  df-plq 9340  df-mq 9341  df-1nq 9342  df-rq 9343  df-ltnq 9344  df-np 9407  df-plp 9409  df-ltp 9411  df-enr 9481  df-nr 9482  df-plr 9483  df-c 9546  df-add 9551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator