MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axacndlem3 Structured version   Visualization version   Unicode version

Theorem axacndlem3 9031
Description: Lemma for the Axiom of Choice with no distinct variable conditions. (Contributed by NM, 3-Jan-2002.)
Assertion
Ref Expression
axacndlem3  |-  ( A. y  y  =  z  ->  E. x A. y A. z ( A. x
( y  e.  z  /\  z  e.  w
)  ->  E. w A. y ( E. w
( ( y  e.  z  /\  z  e.  w )  /\  (
y  e.  w  /\  w  e.  x )
)  <->  y  =  w ) ) )

Proof of Theorem axacndlem3
StepHypRef Expression
1 nfae 2149 . . . 4  |-  F/ z A. y  y  =  z
2 simpl 459 . . . . . 6  |-  ( ( y  e.  z  /\  z  e.  w )  ->  y  e.  z )
32alimi 1683 . . . . 5  |-  ( A. x ( y  e.  z  /\  z  e.  w )  ->  A. x  y  e.  z )
4 nd3 9011 . . . . . 6  |-  ( A. y  y  =  z  ->  -.  A. x  y  e.  z )
54pm2.21d 110 . . . . 5  |-  ( A. y  y  =  z  ->  ( A. x  y  e.  z  ->  E. w A. y ( E. w
( ( y  e.  z  /\  z  e.  w )  /\  (
y  e.  w  /\  w  e.  x )
)  <->  y  =  w ) ) )
63, 5syl5 33 . . . 4  |-  ( A. y  y  =  z  ->  ( A. x ( y  e.  z  /\  z  e.  w )  ->  E. w A. y
( E. w ( ( y  e.  z  /\  z  e.  w
)  /\  ( y  e.  w  /\  w  e.  x ) )  <->  y  =  w ) ) )
71, 6alrimi 1954 . . 3  |-  ( A. y  y  =  z  ->  A. z ( A. x ( y  e.  z  /\  z  e.  w )  ->  E. w A. y ( E. w
( ( y  e.  z  /\  z  e.  w )  /\  (
y  e.  w  /\  w  e.  x )
)  <->  y  =  w ) ) )
87axc4i 1979 . 2  |-  ( A. y  y  =  z  ->  A. y A. z
( A. x ( y  e.  z  /\  z  e.  w )  ->  E. w A. y
( E. w ( ( y  e.  z  /\  z  e.  w
)  /\  ( y  e.  w  /\  w  e.  x ) )  <->  y  =  w ) ) )
9 19.8a 1934 . 2  |-  ( A. y A. z ( A. x ( y  e.  z  /\  z  e.  w )  ->  E. w A. y ( E. w
( ( y  e.  z  /\  z  e.  w )  /\  (
y  e.  w  /\  w  e.  x )
)  <->  y  =  w ) )  ->  E. x A. y A. z ( A. x ( y  e.  z  /\  z  e.  w )  ->  E. w A. y ( E. w
( ( y  e.  z  /\  z  e.  w )  /\  (
y  e.  w  /\  w  e.  x )
)  <->  y  =  w ) ) )
108, 9syl 17 1  |-  ( A. y  y  =  z  ->  E. x A. y A. z ( A. x
( y  e.  z  /\  z  e.  w
)  ->  E. w A. y ( E. w
( ( y  e.  z  /\  z  e.  w )  /\  (
y  e.  w  /\  w  e.  x )
)  <->  y  =  w ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371   A.wal 1441   E.wex 1662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-sep 4524  ax-nul 4533  ax-pr 4638  ax-reg 8104
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-v 3046  df-dif 3406  df-un 3408  df-nul 3731  df-sn 3968  df-pr 3970
This theorem is referenced by:  axacndlem5  9033  axacnd  9034
  Copyright terms: Public domain W3C validator