MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax9 Structured version   Visualization version   Unicode version

Theorem ax9 1911
Description: Proof of ax-9 1907 from ax9v1 1909 and ax9v2 1910, proving sufficiency of the conjunction of the latter two weakened versions of ax9v 1908, which is itself a weakened version of ax-9 1907. (Contributed by BJ, 7-Dec-2020.)
Assertion
Ref Expression
ax9  |-  ( x  =  y  ->  (
z  e.  x  -> 
z  e.  y ) )

Proof of Theorem ax9
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 equviniv 1883 . 2  |-  ( x  =  y  ->  E. t
( x  =  t  /\  y  =  t ) )
2 equcomiv 1869 . . . . 5  |-  ( y  =  t  ->  t  =  y )
32adantl 472 . . . 4  |-  ( ( x  =  t  /\  y  =  t )  ->  t  =  y )
4 ax9v2 1910 . . . . 5  |-  ( x  =  t  ->  (
z  e.  x  -> 
z  e.  t ) )
54adantr 471 . . . 4  |-  ( ( x  =  t  /\  y  =  t )  ->  ( z  e.  x  ->  z  e.  t ) )
6 ax9v1 1909 . . . 4  |-  ( t  =  y  ->  (
z  e.  t  -> 
z  e.  y ) )
73, 5, 6sylsyld 58 . . 3  |-  ( ( x  =  t  /\  y  =  t )  ->  ( z  e.  x  ->  z  e.  y ) )
87exlimiv 1787 . 2  |-  ( E. t ( x  =  t  /\  y  =  t )  ->  (
z  e.  x  -> 
z  e.  y ) )
91, 8syl 17 1  |-  ( x  =  y  ->  (
z  e.  x  -> 
z  e.  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375   E.wex 1674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-9 1907
This theorem depends on definitions:  df-bi 190  df-an 377  df-ex 1675
This theorem is referenced by:  elequ2  1912  el  4599  dtru  4608  fv3  5901  elirrv  8138  bj-ax89  31321  bj-el  31456  bj-dtru  31457  axc11next  36801
  Copyright terms: Public domain W3C validator