Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax6e2ndeqALT Structured version   Unicode version

Theorem ax6e2ndeqALT 31949
Description: "At least two sets exist" expressed in the form of dtru 4567 is logically equivalent to the same expressed in a form similar to ax6e 1947 if dtru 4567 is false implies  u  =  v. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in ax6e2ndeqVD 31927. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax6e2ndeqALT  |-  ( ( -.  A. x  x  =  y  \/  u  =  v )  <->  E. x E. y ( x  =  u  /\  y  =  v ) )
Distinct variable groups:    x, u    y, u    x, v    y,
v

Proof of Theorem ax6e2ndeqALT
StepHypRef Expression
1 ax6e2nd 31549 . . 3  |-  ( -. 
A. x  x  =  y  ->  E. x E. y ( x  =  u  /\  y  =  v ) )
2 ax6e2eq 31548 . . . 4  |-  ( A. x  x  =  y  ->  ( u  =  v  ->  E. x E. y
( x  =  u  /\  y  =  v ) ) )
31a1d 25 . . . 4  |-  ( -. 
A. x  x  =  y  ->  ( u  =  v  ->  E. x E. y ( x  =  u  /\  y  =  v ) ) )
4 exmid 415 . . . 4  |-  ( A. x  x  =  y  \/  -.  A. x  x  =  y )
5 jao 512 . . . . 5  |-  ( ( A. x  x  =  y  ->  ( u  =  v  ->  E. x E. y ( x  =  u  /\  y  =  v ) ) )  ->  ( ( -. 
A. x  x  =  y  ->  ( u  =  v  ->  E. x E. y ( x  =  u  /\  y  =  v ) ) )  ->  ( ( A. x  x  =  y  \/  -.  A. x  x  =  y )  -> 
( u  =  v  ->  E. x E. y
( x  =  u  /\  y  =  v ) ) ) ) )
653imp 1182 . . . 4  |-  ( ( ( A. x  x  =  y  ->  (
u  =  v  ->  E. x E. y ( x  =  u  /\  y  =  v )
) )  /\  ( -.  A. x  x  =  y  ->  ( u  =  v  ->  E. x E. y ( x  =  u  /\  y  =  v ) ) )  /\  ( A. x  x  =  y  \/  -.  A. x  x  =  y ) )  -> 
( u  =  v  ->  E. x E. y
( x  =  u  /\  y  =  v ) ) )
72, 3, 4, 6mp3an 1315 . . 3  |-  ( u  =  v  ->  E. x E. y ( x  =  u  /\  y  =  v ) )
81, 7jaoi 379 . 2  |-  ( ( -.  A. x  x  =  y  \/  u  =  v )  ->  E. x E. y ( x  =  u  /\  y  =  v )
)
9 hbnae 2007 . . . . . . . . 9  |-  ( -. 
A. x  x  =  y  ->  A. y  -.  A. x  x  =  y )
109eximi 1626 . . . . . . . 8  |-  ( E. y  -.  A. x  x  =  y  ->  E. y A. y  -. 
A. x  x  =  y )
11 nfa1 1832 . . . . . . . . 9  |-  F/ y A. y  -.  A. x  x  =  y
121119.9 1828 . . . . . . . 8  |-  ( E. y A. y  -. 
A. x  x  =  y  <->  A. y  -.  A. x  x  =  y
)
1310, 12sylib 196 . . . . . . 7  |-  ( E. y  -.  A. x  x  =  y  ->  A. y  -.  A. x  x  =  y )
14 sp 1795 . . . . . . 7  |-  ( A. y  -.  A. x  x  =  y  ->  -.  A. x  x  =  y )
1513, 14syl 16 . . . . . 6  |-  ( E. y  -.  A. x  x  =  y  ->  -. 
A. x  x  =  y )
16 excom 1788 . . . . . . 7  |-  ( E. x E. y ( x  =  u  /\  y  =  v )  <->  E. y E. x ( x  =  u  /\  y  =  v )
)
17 nfa1 1832 . . . . . . . . . . . 12  |-  F/ x A. x  x  =  y
1817nfn 1836 . . . . . . . . . . 11  |-  F/ x  -.  A. x  x  =  y
191819.9 1828 . . . . . . . . . 10  |-  ( E. x  -.  A. x  x  =  y  <->  -.  A. x  x  =  y )
20 id 22 . . . . . . . . . . . . . . . 16  |-  ( u  =/=  v  ->  u  =/=  v )
21 simpr 461 . . . . . . . . . . . . . . . . 17  |-  ( ( u  =/=  v  /\  ( x  =  u  /\  y  =  v
) )  ->  (
x  =  u  /\  y  =  v )
)
22 simpl 457 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  u  /\  y  =  v )  ->  x  =  u )
2321, 22syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( u  =/=  v  /\  ( x  =  u  /\  y  =  v
) )  ->  x  =  u )
24 pm13.181 2757 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  u  /\  u  =/=  v )  ->  x  =/=  v )
2524ancoms 453 . . . . . . . . . . . . . . . 16  |-  ( ( u  =/=  v  /\  x  =  u )  ->  x  =/=  v )
2620, 23, 25eel121 31723 . . . . . . . . . . . . . . 15  |-  ( ( u  =/=  v  /\  ( x  =  u  /\  y  =  v
) )  ->  x  =/=  v )
27 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  u  /\  y  =  v )  ->  y  =  v )
2821, 27syl 16 . . . . . . . . . . . . . . 15  |-  ( ( u  =/=  v  /\  ( x  =  u  /\  y  =  v
) )  ->  y  =  v )
29 neeq2 2728 . . . . . . . . . . . . . . . 16  |-  ( y  =  v  ->  (
x  =/=  y  <->  x  =/=  v ) )
3029biimparc 487 . . . . . . . . . . . . . . 15  |-  ( ( x  =/=  v  /\  y  =  v )  ->  x  =/=  y )
3126, 28, 30syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( u  =/=  v  /\  ( x  =  u  /\  y  =  v
) )  ->  x  =/=  y )
32 df-ne 2643 . . . . . . . . . . . . . . . 16  |-  ( x  =/=  y  <->  -.  x  =  y )
3332bicomi 202 . . . . . . . . . . . . . . 15  |-  ( -.  x  =  y  <->  x  =/=  y )
34 sp 1795 . . . . . . . . . . . . . . . 16  |-  ( A. x  x  =  y  ->  x  =  y )
3534con3i 135 . . . . . . . . . . . . . . 15  |-  ( -.  x  =  y  ->  -.  A. x  x  =  y )
3633, 35sylbir 213 . . . . . . . . . . . . . 14  |-  ( x  =/=  y  ->  -.  A. x  x  =  y )
3731, 36syl 16 . . . . . . . . . . . . 13  |-  ( ( u  =/=  v  /\  ( x  =  u  /\  y  =  v
) )  ->  -.  A. x  x  =  y )
3837ex 434 . . . . . . . . . . . 12  |-  ( u  =/=  v  ->  (
( x  =  u  /\  y  =  v )  ->  -.  A. x  x  =  y )
)
3938alrimiv 1686 . . . . . . . . . . 11  |-  ( u  =/=  v  ->  A. x
( ( x  =  u  /\  y  =  v )  ->  -.  A. x  x  =  y ) )
40 exim 1624 . . . . . . . . . . 11  |-  ( A. x ( ( x  =  u  /\  y  =  v )  ->  -.  A. x  x  =  y )  ->  ( E. x ( x  =  u  /\  y  =  v )  ->  E. x  -.  A. x  x  =  y ) )
4139, 40syl 16 . . . . . . . . . 10  |-  ( u  =/=  v  ->  ( E. x ( x  =  u  /\  y  =  v )  ->  E. x  -.  A. x  x  =  y ) )
42 imbi2 324 . . . . . . . . . . 11  |-  ( ( E. x  -.  A. x  x  =  y  <->  -. 
A. x  x  =  y )  ->  (
( E. x ( x  =  u  /\  y  =  v )  ->  E. x  -.  A. x  x  =  y
)  <->  ( E. x
( x  =  u  /\  y  =  v )  ->  -.  A. x  x  =  y )
) )
4342biimpa 484 . . . . . . . . . 10  |-  ( ( ( E. x  -.  A. x  x  =  y  <->  -.  A. x  x  =  y )  /\  ( E. x ( x  =  u  /\  y  =  v )  ->  E. x  -.  A. x  x  =  y ) )  -> 
( E. x ( x  =  u  /\  y  =  v )  ->  -.  A. x  x  =  y ) )
4419, 41, 43sylancr 663 . . . . . . . . 9  |-  ( u  =/=  v  ->  ( E. x ( x  =  u  /\  y  =  v )  ->  -.  A. x  x  =  y ) )
4544alrimiv 1686 . . . . . . . 8  |-  ( u  =/=  v  ->  A. y
( E. x ( x  =  u  /\  y  =  v )  ->  -.  A. x  x  =  y ) )
46 exim 1624 . . . . . . . 8  |-  ( A. y ( E. x
( x  =  u  /\  y  =  v )  ->  -.  A. x  x  =  y )  ->  ( E. y E. x ( x  =  u  /\  y  =  v )  ->  E. y  -.  A. x  x  =  y ) )
4745, 46syl 16 . . . . . . 7  |-  ( u  =/=  v  ->  ( E. y E. x ( x  =  u  /\  y  =  v )  ->  E. y  -.  A. x  x  =  y
) )
48 imbi1 323 . . . . . . . 8  |-  ( ( E. x E. y
( x  =  u  /\  y  =  v )  <->  E. y E. x
( x  =  u  /\  y  =  v ) )  ->  (
( E. x E. y ( x  =  u  /\  y  =  v )  ->  E. y  -.  A. x  x  =  y )  <->  ( E. y E. x ( x  =  u  /\  y  =  v )  ->  E. y  -.  A. x  x  =  y )
) )
4948biimpar 485 . . . . . . 7  |-  ( ( ( E. x E. y ( x  =  u  /\  y  =  v )  <->  E. y E. x ( x  =  u  /\  y  =  v ) )  /\  ( E. y E. x
( x  =  u  /\  y  =  v )  ->  E. y  -.  A. x  x  =  y ) )  -> 
( E. x E. y ( x  =  u  /\  y  =  v )  ->  E. y  -.  A. x  x  =  y ) )
5016, 47, 49sylancr 663 . . . . . 6  |-  ( u  =/=  v  ->  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  E. y  -.  A. x  x  =  y
) )
51 pm3.34 586 . . . . . 6  |-  ( ( ( E. y  -. 
A. x  x  =  y  ->  -.  A. x  x  =  y )  /\  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  E. y  -.  A. x  x  =  y ) )  -> 
( E. x E. y ( x  =  u  /\  y  =  v )  ->  -.  A. x  x  =  y ) )
5215, 50, 51sylancr 663 . . . . 5  |-  ( u  =/=  v  ->  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  -.  A. x  x  =  y ) )
53 orc 385 . . . . . 6  |-  ( -. 
A. x  x  =  y  ->  ( -.  A. x  x  =  y  \/  u  =  v ) )
5453imim2i 14 . . . . 5  |-  ( ( E. x E. y
( x  =  u  /\  y  =  v )  ->  -.  A. x  x  =  y )  ->  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  ( -.  A. x  x  =  y  \/  u  =  v ) ) )
5552, 54syl 16 . . . 4  |-  ( u  =/=  v  ->  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  ( -.  A. x  x  =  y  \/  u  =  v )
) )
5655idiALT 31435 . . 3  |-  ( u  =/=  v  ->  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  ( -.  A. x  x  =  y  \/  u  =  v )
) )
57 id 22 . . . . . 6  |-  ( u  =  v  ->  u  =  v )
58 ax-1 6 . . . . . 6  |-  ( u  =  v  ->  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  u  =  v ) )
5957, 58syl 16 . . . . 5  |-  ( u  =  v  ->  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  u  =  v ) )
60 olc 384 . . . . . 6  |-  ( u  =  v  ->  ( -.  A. x  x  =  y  \/  u  =  v ) )
6160imim2i 14 . . . . 5  |-  ( ( E. x E. y
( x  =  u  /\  y  =  v )  ->  u  =  v )  ->  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  ( -.  A. x  x  =  y  \/  u  =  v )
) )
6259, 61syl 16 . . . 4  |-  ( u  =  v  ->  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  ( -.  A. x  x  =  y  \/  u  =  v )
) )
6362idiALT 31435 . . 3  |-  ( u  =  v  ->  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  ( -.  A. x  x  =  y  \/  u  =  v )
) )
64 exmidne 2651 . . 3  |-  ( u  =  v  \/  u  =/=  v )
65 jao 512 . . . 4  |-  ( ( u  =  v  -> 
( E. x E. y ( x  =  u  /\  y  =  v )  ->  ( -.  A. x  x  =  y  \/  u  =  v ) ) )  ->  ( ( u  =/=  v  ->  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  ( -.  A. x  x  =  y  \/  u  =  v )
) )  ->  (
( u  =  v  \/  u  =/=  v
)  ->  ( E. x E. y ( x  =  u  /\  y  =  v )  -> 
( -.  A. x  x  =  y  \/  u  =  v )
) ) ) )
66653imp21 31559 . . 3  |-  ( ( ( u  =/=  v  ->  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  ( -.  A. x  x  =  y  \/  u  =  v ) ) )  /\  ( u  =  v  ->  ( E. x E. y ( x  =  u  /\  y  =  v )  -> 
( -.  A. x  x  =  y  \/  u  =  v )
) )  /\  (
u  =  v  \/  u  =/=  v ) )  ->  ( E. x E. y ( x  =  u  /\  y  =  v )  -> 
( -.  A. x  x  =  y  \/  u  =  v )
) )
6756, 63, 64, 66mp3an 1315 . 2  |-  ( E. x E. y ( x  =  u  /\  y  =  v )  ->  ( -.  A. x  x  =  y  \/  u  =  v )
)
688, 67impbii 188 1  |-  ( ( -.  A. x  x  =  y  \/  u  =  v )  <->  E. x E. y ( x  =  u  /\  y  =  v ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369   A.wal 1368    = wceq 1370   E.wex 1587    =/= wne 2641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2429
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1702  df-clab 2436  df-cleq 2442  df-clel 2445  df-ne 2643  df-v 3056
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator