Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax6e2ndVD Structured version   Unicode version

Theorem ax6e2ndVD 36945
Description: The following User's Proof is a Virtual Deduction proof (see wvd1 36577) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. ax6e2nd 36562 is ax6e2ndVD 36945 without virtual deductions and was automatically derived from ax6e2ndVD 36945. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1::  |-  E. y y  =  v
2::  |-  u  e.  _V
3:1,2:  |-  ( u  e.  _V  /\  E. y y  =  v )
4:3:  |-  E. y ( u  e.  _V  /\  y  =  v )
5::  |-  ( u  e.  _V  <->  E. x x  =  u )
6:5:  |-  ( ( u  e.  _V  /\  y  =  v )  <->  ( E. x x  =  u  /\  y  =  v ) )
7:6:  |-  ( E. y ( u  e.  _V  /\  y  =  v )  <->  E. y  ( E. x x  =  u  /\  y  =  v ) )
8:4,7:  |-  E. y ( E. x x  =  u  /\  y  =  v )
9::  |-  ( z  =  v  ->  A. x z  =  v )
10::  |-  ( y  =  v  ->  A. z y  =  v )
11::  |-  (. z  =  y  ->.  z  =  y ).
12:11:  |-  (. z  =  y  ->.  ( z  =  v  <->  y  =  v ) ).
120:11:  |-  ( z  =  y  ->  ( z  =  v  <->  y  =  v ) )
13:9,10,120:  |-  ( -.  A. x x  =  y  ->  ( y  =  v  ->  A. x y  =  v ) )
14::  |-  (. -.  A. x x  =  y  ->.  -.  A. x x  =  y ).
15:14,13:  |-  (. -.  A. x x  =  y  ->.  ( y  =  v  ->  A. x  y  =  v ) ).
16:15:  |-  ( -.  A. x x  =  y  ->  ( y  =  v  ->  A. x y  =  v ) )
17:16:  |-  ( A. x -.  A. x x  =  y  ->  A. x ( y  =  v  ->  A. x y  =  v ) )
18::  |-  ( -.  A. x x  =  y  ->  A. x -.  A. x x  =  y  )
19:17,18:  |-  ( -.  A. x x  =  y  ->  A. x ( y  =  v  ->  A.  x y  =  v ) )
20:14,19:  |-  (. -.  A. x x  =  y  ->.  A. x ( y  =  v  ->  A. x y  =  v ) ).
21:20:  |-  (. -.  A. x x  =  y  ->.  ( ( E. x x  =  u  /\  y  =  v )  ->  E. x ( x  =  u  /\  y  =  v ) ) ).
22:21:  |-  ( -.  A. x x  =  y  ->  ( ( E. x x  =  u  /\  y  =  v )  ->  E. x ( x  =  u  /\  y  =  v ) ) )
23:22:  |-  ( A. y -.  A. x x  =  y  ->  A. y ( ( E. x  x  =  u  /\  y  =  v )  ->  E. x ( x  =  u  /\  y  =  v ) ) )
24::  |-  ( -.  A. x x  =  y  ->  A. y -.  A. x x  =  y  )
25:23,24:  |-  ( -.  A. x x  =  y  ->  A. y ( ( E. x x  =  u  /\  y  =  v )  ->  E. x ( x  =  u  /\  y  =  v ) ) )
26:14,25:  |-  (. -.  A. x x  =  y  ->.  A. y ( ( E. x x  =  u  /\  y  =  v )  ->  E. x ( x  =  u  /\  y  =  v ) ) ).
27:26:  |-  (. -.  A. x x  =  y  ->.  ( E. y ( E. x x  =  u  /\  y  =  v )  ->  E. y E. x ( x  =  u  /\  y  =  v ) ) ).
28:8,27:  |-  (. -.  A. x x  =  y  ->.  E. y E. x ( x  =  u  /\  y  =  v ) ).
29:28:  |-  (. -.  A. x x  =  y  ->.  E. x E. y ( x  =  u  /\  y  =  v ) ).
qed:29:  |-  ( -.  A. x x  =  y  ->  E. x E. y ( x  =  u  /\  y  =  v ) )
Assertion
Ref Expression
ax6e2ndVD  |-  ( -. 
A. x  x  =  y  ->  E. x E. y ( x  =  u  /\  y  =  v ) )
Distinct variable groups:    x, u    y, u    x, v

Proof of Theorem ax6e2ndVD
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 vex 3090 . . . . . . 7  |-  u  e. 
_V
2 ax6e 2058 . . . . . . 7  |-  E. y 
y  =  v
31, 2pm3.2i 456 . . . . . 6  |-  ( u  e.  _V  /\  E. y  y  =  v
)
4 19.42v 1826 . . . . . . 7  |-  ( E. y ( u  e. 
_V  /\  y  =  v )  <->  ( u  e.  _V  /\  E. y 
y  =  v ) )
54biimpri 209 . . . . . 6  |-  ( ( u  e.  _V  /\  E. y  y  =  v )  ->  E. y
( u  e.  _V  /\  y  =  v ) )
63, 5e0a 36799 . . . . 5  |-  E. y
( u  e.  _V  /\  y  =  v )
7 isset 3091 . . . . . . 7  |-  ( u  e.  _V  <->  E. x  x  =  u )
87anbi1i 699 . . . . . 6  |-  ( ( u  e.  _V  /\  y  =  v )  <->  ( E. x  x  =  u  /\  y  =  v ) )
98exbii 1714 . . . . 5  |-  ( E. y ( u  e. 
_V  /\  y  =  v )  <->  E. y
( E. x  x  =  u  /\  y  =  v ) )
106, 9mpbi 211 . . . 4  |-  E. y
( E. x  x  =  u  /\  y  =  v )
11 idn1 36582 . . . . . 6  |-  (.  -.  A. x  x  =  y  ->.  -.  A. x  x  =  y ).
12 hbnae 2113 . . . . . . 7  |-  ( -. 
A. x  x  =  y  ->  A. y  -.  A. x  x  =  y )
13 hbn1 1890 . . . . . . . . . . . 12  |-  ( -. 
A. x  x  =  y  ->  A. x  -.  A. x  x  =  y )
14 ax-5 1751 . . . . . . . . . . . . . . . 16  |-  ( z  =  v  ->  A. x  z  =  v )
15 ax-5 1751 . . . . . . . . . . . . . . . 16  |-  ( y  =  v  ->  A. z 
y  =  v )
16 idn1 36582 . . . . . . . . . . . . . . . . . 18  |-  (. z  =  y  ->.  z  =  y ).
17 equequ1 1850 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  y  ->  (
z  =  v  <->  y  =  v ) )
1816, 17e1a 36644 . . . . . . . . . . . . . . . . 17  |-  (. z  =  y  ->.  ( z  =  v  <->  y  =  v ) ).
1918in1 36579 . . . . . . . . . . . . . . . 16  |-  ( z  =  y  ->  (
z  =  v  <->  y  =  v ) )
2014, 15, 19dvelimh 2134 . . . . . . . . . . . . . . 15  |-  ( -. 
A. x  x  =  y  ->  ( y  =  v  ->  A. x  y  =  v )
)
2111, 20e1a 36644 . . . . . . . . . . . . . 14  |-  (.  -.  A. x  x  =  y  ->.  ( y  =  v  ->  A. x  y  =  v ) ).
2221in1 36579 . . . . . . . . . . . . 13  |-  ( -. 
A. x  x  =  y  ->  ( y  =  v  ->  A. x  y  =  v )
)
2322alimi 1680 . . . . . . . . . . . 12  |-  ( A. x  -.  A. x  x  =  y  ->  A. x
( y  =  v  ->  A. x  y  =  v ) )
2413, 23syl 17 . . . . . . . . . . 11  |-  ( -. 
A. x  x  =  y  ->  A. x
( y  =  v  ->  A. x  y  =  v ) )
2511, 24e1a 36644 . . . . . . . . . 10  |-  (.  -.  A. x  x  =  y  ->.  A. x ( y  =  v  ->  A. x  y  =  v ) ).
26 19.41rg 36554 . . . . . . . . . 10  |-  ( A. x ( y  =  v  ->  A. x  y  =  v )  ->  ( ( E. x  x  =  u  /\  y  =  v )  ->  E. x ( x  =  u  /\  y  =  v ) ) )
2725, 26e1a 36644 . . . . . . . . 9  |-  (.  -.  A. x  x  =  y  ->.  ( ( E. x  x  =  u  /\  y  =  v )  ->  E. x ( x  =  u  /\  y  =  v ) ) ).
2827in1 36579 . . . . . . . 8  |-  ( -. 
A. x  x  =  y  ->  ( ( E. x  x  =  u  /\  y  =  v )  ->  E. x
( x  =  u  /\  y  =  v ) ) )
2928alimi 1680 . . . . . . 7  |-  ( A. y  -.  A. x  x  =  y  ->  A. y
( ( E. x  x  =  u  /\  y  =  v )  ->  E. x ( x  =  u  /\  y  =  v ) ) )
3012, 29syl 17 . . . . . 6  |-  ( -. 
A. x  x  =  y  ->  A. y
( ( E. x  x  =  u  /\  y  =  v )  ->  E. x ( x  =  u  /\  y  =  v ) ) )
3111, 30e1a 36644 . . . . 5  |-  (.  -.  A. x  x  =  y  ->.  A. y ( ( E. x  x  =  u  /\  y  =  v )  ->  E. x
( x  =  u  /\  y  =  v ) ) ).
32 exim 1701 . . . . 5  |-  ( A. y ( ( E. x  x  =  u  /\  y  =  v )  ->  E. x
( x  =  u  /\  y  =  v ) )  ->  ( E. y ( E. x  x  =  u  /\  y  =  v )  ->  E. y E. x
( x  =  u  /\  y  =  v ) ) )
3331, 32e1a 36644 . . . 4  |-  (.  -.  A. x  x  =  y  ->.  ( E. y ( E. x  x  =  u  /\  y  =  v )  ->  E. y E. x ( x  =  u  /\  y  =  v ) ) ).
34 pm2.27 40 . . . 4  |-  ( E. y ( E. x  x  =  u  /\  y  =  v )  ->  ( ( E. y
( E. x  x  =  u  /\  y  =  v )  ->  E. y E. x ( x  =  u  /\  y  =  v )
)  ->  E. y E. x ( x  =  u  /\  y  =  v ) ) )
3510, 33, 34e01 36708 . . 3  |-  (.  -.  A. x  x  =  y  ->.  E. y E. x ( x  =  u  /\  y  =  v ) ).
36 excomim 1903 . . 3  |-  ( E. y E. x ( x  =  u  /\  y  =  v )  ->  E. x E. y
( x  =  u  /\  y  =  v ) )
3735, 36e1a 36644 . 2  |-  (.  -.  A. x  x  =  y  ->.  E. x E. y ( x  =  u  /\  y  =  v ) ).
3837in1 36579 1  |-  ( -. 
A. x  x  =  y  ->  E. x E. y ( x  =  u  /\  y  =  v ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370   A.wal 1435    = wceq 1437   E.wex 1659    e. wcel 1870   _Vcvv 3087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407
This theorem depends on definitions:  df-bi 188  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-clab 2415  df-cleq 2421  df-clel 2424  df-v 3089  df-vd1 36578
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator