MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seglem9 Structured version   Unicode version

Theorem ax5seglem9 24954
Description: Lemma for ax5seg 24955. Take the calculation in ax5seglem8 24953 and turn it into a series of measurements. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
ax5seglem9  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  /\  ( T  e.  ( 0 [,] 1
)  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  ( T  x.  sum_ j  e.  ( 1 ... N
) ( ( ( C `  j )  -  ( D `  j ) ) ^
2 ) )  =  ( sum_ j  e.  ( 1 ... N ) ( ( ( B `
 j )  -  ( D `  j ) ) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  sum_ j  e.  ( 1 ... N ) ( ( ( A `  j )  -  ( C `  j )
) ^ 2 ) )  -  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( D `  j ) ) ^
2 ) ) ) ) )
Distinct variable groups:    A, i,
j    B, i, j    C, i, j    D, i, j   
i, N, j    T, i, j

Proof of Theorem ax5seglem9
StepHypRef Expression
1 fzfid 12186 . . 3  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  /\  ( T  e.  ( 0 [,] 1
)  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  (
1 ... N )  e. 
Fin )
2 0re 9644 . . . . . . 7  |-  0  e.  RR
3 1re 9643 . . . . . . 7  |-  1  e.  RR
42, 3elicc2i 11701 . . . . . 6  |-  ( T  e.  ( 0 [,] 1 )  <->  ( T  e.  RR  /\  0  <_  T  /\  T  <_  1
) )
54simp1bi 1020 . . . . 5  |-  ( T  e.  ( 0 [,] 1 )  ->  T  e.  RR )
65recnd 9670 . . . 4  |-  ( T  e.  ( 0 [,] 1 )  ->  T  e.  CC )
76ad2antrl 732 . . 3  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  /\  ( T  e.  ( 0 [,] 1
)  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  T  e.  CC )
8 simprrl 772 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  C  e.  ( EE `  N ) )
98ad2antrr 730 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  C  e.  ( EE `  N ) )
10 fveecn 24919 . . . . . 6  |-  ( ( C  e.  ( EE
`  N )  /\  j  e.  ( 1 ... N ) )  ->  ( C `  j )  e.  CC )
119, 10sylancom 671 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( C `  j )  e.  CC )
12 simprrr 773 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  D  e.  ( EE `  N ) )
1312ad2antrr 730 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  D  e.  ( EE `  N ) )
14 fveecn 24919 . . . . . 6  |-  ( ( D  e.  ( EE
`  N )  /\  j  e.  ( 1 ... N ) )  ->  ( D `  j )  e.  CC )
1513, 14sylancom 671 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( D `  j )  e.  CC )
1611, 15subcld 9987 . . . 4  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( ( C `  j )  -  ( D `  j ) )  e.  CC )
1716sqcld 12414 . . 3  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( (
( C `  j
)  -  ( D `
 j ) ) ^ 2 )  e.  CC )
181, 7, 17fsummulc2 13833 . 2  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  /\  ( T  e.  ( 0 [,] 1
)  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  ( T  x.  sum_ j  e.  ( 1 ... N
) ( ( ( C `  j )  -  ( D `  j ) ) ^
2 ) )  = 
sum_ j  e.  ( 1 ... N ) ( T  x.  (
( ( C `  j )  -  ( D `  j )
) ^ 2 ) ) )
19 simprll 770 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  A  e.  ( EE `  N ) )
2019ad2antrr 730 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  A  e.  ( EE `  N ) )
21 fveecn 24919 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( EE
`  N )  /\  j  e.  ( 1 ... N ) )  ->  ( A `  j )  e.  CC )
2220, 21sylancom 671 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( A `  j )  e.  CC )
2322, 11subcld 9987 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( ( A `  j )  -  ( C `  j ) )  e.  CC )
2423sqcld 12414 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( (
( A `  j
)  -  ( C `
 j ) ) ^ 2 )  e.  CC )
251, 7, 24fsummulc2 13833 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  /\  ( T  e.  ( 0 [,] 1
)  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  ( T  x.  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) )  = 
sum_ j  e.  ( 1 ... N ) ( T  x.  (
( ( A `  j )  -  ( C `  j )
) ^ 2 ) ) )
2625oveq1d 6317 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  /\  ( T  e.  ( 0 [,] 1
)  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  (
( T  x.  sum_ j  e.  ( 1 ... N ) ( ( ( A `  j )  -  ( C `  j )
) ^ 2 ) )  -  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( D `  j ) ) ^
2 ) )  =  ( sum_ j  e.  ( 1 ... N ) ( T  x.  (
( ( A `  j )  -  ( C `  j )
) ^ 2 ) )  -  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( D `  j ) ) ^
2 ) ) )
277adantr 466 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  T  e.  CC )
2827, 24mulcld 9664 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( T  x.  ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) )  e.  CC )
2922, 15subcld 9987 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( ( A `  j )  -  ( D `  j ) )  e.  CC )
3029sqcld 12414 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( (
( A `  j
)  -  ( D `
 j ) ) ^ 2 )  e.  CC )
311, 28, 30fsumsub 13837 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  /\  ( T  e.  ( 0 [,] 1
)  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( T  x.  ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) )  -  ( ( ( A `
 j )  -  ( D `  j ) ) ^ 2 ) )  =  ( sum_ j  e.  ( 1 ... N ) ( T  x.  ( ( ( A `  j
)  -  ( C `
 j ) ) ^ 2 ) )  -  sum_ j  e.  ( 1 ... N ) ( ( ( A `
 j )  -  ( D `  j ) ) ^ 2 ) ) )
3226, 31eqtr4d 2466 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  /\  ( T  e.  ( 0 [,] 1
)  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  (
( T  x.  sum_ j  e.  ( 1 ... N ) ( ( ( A `  j )  -  ( C `  j )
) ^ 2 ) )  -  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( D `  j ) ) ^
2 ) )  = 
sum_ j  e.  ( 1 ... N ) ( ( T  x.  ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) )  -  ( ( ( A `  j
)  -  ( D `
 j ) ) ^ 2 ) ) )
3332oveq2d 6318 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  /\  ( T  e.  ( 0 [,] 1
)  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  (
( 1  -  T
)  x.  ( ( T  x.  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) )  -  sum_ j  e.  ( 1 ... N ) ( ( ( A `  j )  -  ( D `  j )
) ^ 2 ) ) )  =  ( ( 1  -  T
)  x.  sum_ j  e.  ( 1 ... N
) ( ( T  x.  ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) )  -  ( ( ( A `
 j )  -  ( D `  j ) ) ^ 2 ) ) ) )
34 ax-1cn 9598 . . . . . . . 8  |-  1  e.  CC
35 subcl 9875 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  T  e.  CC )  ->  ( 1  -  T
)  e.  CC )
3634, 7, 35sylancr 667 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  /\  ( T  e.  ( 0 [,] 1
)  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  (
1  -  T )  e.  CC )
3728, 30subcld 9987 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( ( T  x.  ( (
( A `  j
)  -  ( C `
 j ) ) ^ 2 ) )  -  ( ( ( A `  j )  -  ( D `  j ) ) ^
2 ) )  e.  CC )
381, 36, 37fsummulc2 13833 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  /\  ( T  e.  ( 0 [,] 1
)  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  (
( 1  -  T
)  x.  sum_ j  e.  ( 1 ... N
) ( ( T  x.  ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) )  -  ( ( ( A `
 j )  -  ( D `  j ) ) ^ 2 ) ) )  =  sum_ j  e.  ( 1 ... N ) ( ( 1  -  T
)  x.  ( ( T  x.  ( ( ( A `  j
)  -  ( C `
 j ) ) ^ 2 ) )  -  ( ( ( A `  j )  -  ( D `  j ) ) ^
2 ) ) ) )
3933, 38eqtrd 2463 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  /\  ( T  e.  ( 0 [,] 1
)  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  (
( 1  -  T
)  x.  ( ( T  x.  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) )  -  sum_ j  e.  ( 1 ... N ) ( ( ( A `  j )  -  ( D `  j )
) ^ 2 ) ) )  =  sum_ j  e.  ( 1 ... N ) ( ( 1  -  T
)  x.  ( ( T  x.  ( ( ( A `  j
)  -  ( C `
 j ) ) ^ 2 ) )  -  ( ( ( A `  j )  -  ( D `  j ) ) ^
2 ) ) ) )
4039oveq2d 6318 . . . 4  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  /\  ( T  e.  ( 0 [,] 1
)  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  ( sum_ j  e.  ( 1 ... N ) ( ( ( B `  j )  -  ( D `  j )
) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  sum_ j  e.  ( 1 ... N ) ( ( ( A `  j )  -  ( C `  j )
) ^ 2 ) )  -  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( D `  j ) ) ^
2 ) ) ) )  =  ( sum_ j  e.  ( 1 ... N ) ( ( ( B `  j )  -  ( D `  j )
) ^ 2 )  +  sum_ j  e.  ( 1 ... N ) ( ( 1  -  T )  x.  (
( T  x.  (
( ( A `  j )  -  ( C `  j )
) ^ 2 ) )  -  ( ( ( A `  j
)  -  ( D `
 j ) ) ^ 2 ) ) ) ) )
41 simprlr 771 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  B  e.  ( EE `  N ) )
4241ad2antrr 730 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  B  e.  ( EE `  N ) )
43 fveecn 24919 . . . . . . . 8  |-  ( ( B  e.  ( EE
`  N )  /\  j  e.  ( 1 ... N ) )  ->  ( B `  j )  e.  CC )
4442, 43sylancom 671 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( B `  j )  e.  CC )
4544, 15subcld 9987 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( ( B `  j )  -  ( D `  j ) )  e.  CC )
4645sqcld 12414 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( (
( B `  j
)  -  ( D `
 j ) ) ^ 2 )  e.  CC )
4734, 27, 35sylancr 667 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( 1  -  T )  e.  CC )
4847, 37mulcld 9664 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( (
1  -  T )  x.  ( ( T  x.  ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) )  -  ( ( ( A `
 j )  -  ( D `  j ) ) ^ 2 ) ) )  e.  CC )
491, 46, 48fsumadd 13793 . . . 4  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  /\  ( T  e.  ( 0 [,] 1
)  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( ( B `  j
)  -  ( D `
 j ) ) ^ 2 )  +  ( ( 1  -  T )  x.  (
( T  x.  (
( ( A `  j )  -  ( C `  j )
) ^ 2 ) )  -  ( ( ( A `  j
)  -  ( D `
 j ) ) ^ 2 ) ) ) )  =  (
sum_ j  e.  ( 1 ... N ) ( ( ( B `
 j )  -  ( D `  j ) ) ^ 2 )  +  sum_ j  e.  ( 1 ... N ) ( ( 1  -  T )  x.  (
( T  x.  (
( ( A `  j )  -  ( C `  j )
) ^ 2 ) )  -  ( ( ( A `  j
)  -  ( D `
 j ) ) ^ 2 ) ) ) ) )
5040, 49eqtr4d 2466 . . 3  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  /\  ( T  e.  ( 0 [,] 1
)  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  ( sum_ j  e.  ( 1 ... N ) ( ( ( B `  j )  -  ( D `  j )
) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  sum_ j  e.  ( 1 ... N ) ( ( ( A `  j )  -  ( C `  j )
) ^ 2 ) )  -  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( D `  j ) ) ^
2 ) ) ) )  =  sum_ j  e.  ( 1 ... N
) ( ( ( ( B `  j
)  -  ( D `
 j ) ) ^ 2 )  +  ( ( 1  -  T )  x.  (
( T  x.  (
( ( A `  j )  -  ( C `  j )
) ^ 2 ) )  -  ( ( ( A `  j
)  -  ( D `
 j ) ) ^ 2 ) ) ) ) )
51 fveq2 5878 . . . . . . . . 9  |-  ( i  =  j  ->  ( B `  i )  =  ( B `  j ) )
52 fveq2 5878 . . . . . . . . . . 11  |-  ( i  =  j  ->  ( A `  i )  =  ( A `  j ) )
5352oveq2d 6318 . . . . . . . . . 10  |-  ( i  =  j  ->  (
( 1  -  T
)  x.  ( A `
 i ) )  =  ( ( 1  -  T )  x.  ( A `  j
) ) )
54 fveq2 5878 . . . . . . . . . . 11  |-  ( i  =  j  ->  ( C `  i )  =  ( C `  j ) )
5554oveq2d 6318 . . . . . . . . . 10  |-  ( i  =  j  ->  ( T  x.  ( C `  i ) )  =  ( T  x.  ( C `  j )
) )
5653, 55oveq12d 6320 . . . . . . . . 9  |-  ( i  =  j  ->  (
( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) ) )
5751, 56eqeq12d 2444 . . . . . . . 8  |-  ( i  =  j  ->  (
( B `  i
)  =  ( ( ( 1  -  T
)  x.  ( A `
 i ) )  +  ( T  x.  ( C `  i ) ) )  <->  ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j )
)  +  ( T  x.  ( C `  j ) ) ) ) )
5857rspccva 3181 . . . . . . 7  |-  ( ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  T
)  x.  ( A `
 i ) )  +  ( T  x.  ( C `  i ) ) )  /\  j  e.  ( 1 ... N
) )  ->  ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) ) )
5958adantll 718 . . . . . 6  |-  ( ( ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) )  /\  j  e.  ( 1 ... N
) )  ->  ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) ) )
6059adantll 718 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j )
)  +  ( T  x.  ( C `  j ) ) ) )
61 ax5seglem8 24953 . . . . . . 7  |-  ( ( ( ( A `  j )  e.  CC  /\  T  e.  CC )  /\  ( ( C `
 j )  e.  CC  /\  ( D `
 j )  e.  CC ) )  -> 
( T  x.  (
( ( C `  j )  -  ( D `  j )
) ^ 2 ) )  =  ( ( ( ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) )  -  ( D `  j )
) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) )  -  ( ( ( A `  j
)  -  ( D `
 j ) ) ^ 2 ) ) ) ) )
62 oveq1 6309 . . . . . . . . . 10  |-  ( ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) )  ->  (
( B `  j
)  -  ( D `
 j ) )  =  ( ( ( ( 1  -  T
)  x.  ( A `
 j ) )  +  ( T  x.  ( C `  j ) ) )  -  ( D `  j )
) )
6362oveq1d 6317 . . . . . . . . 9  |-  ( ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) )  ->  (
( ( B `  j )  -  ( D `  j )
) ^ 2 )  =  ( ( ( ( ( 1  -  T )  x.  ( A `  j )
)  +  ( T  x.  ( C `  j ) ) )  -  ( D `  j ) ) ^
2 ) )
6463oveq1d 6317 . . . . . . . 8  |-  ( ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) )  ->  (
( ( ( B `
 j )  -  ( D `  j ) ) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) )  -  ( ( ( A `  j
)  -  ( D `
 j ) ) ^ 2 ) ) ) )  =  ( ( ( ( ( ( 1  -  T
)  x.  ( A `
 j ) )  +  ( T  x.  ( C `  j ) ) )  -  ( D `  j )
) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) )  -  ( ( ( A `  j
)  -  ( D `
 j ) ) ^ 2 ) ) ) ) )
6564eqcomd 2430 . . . . . . 7  |-  ( ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) )  ->  (
( ( ( ( ( 1  -  T
)  x.  ( A `
 j ) )  +  ( T  x.  ( C `  j ) ) )  -  ( D `  j )
) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) )  -  ( ( ( A `  j
)  -  ( D `
 j ) ) ^ 2 ) ) ) )  =  ( ( ( ( B `
 j )  -  ( D `  j ) ) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) )  -  ( ( ( A `  j
)  -  ( D `
 j ) ) ^ 2 ) ) ) ) )
6661, 65sylan9eq 2483 . . . . . 6  |-  ( ( ( ( ( A `
 j )  e.  CC  /\  T  e.  CC )  /\  (
( C `  j
)  e.  CC  /\  ( D `  j )  e.  CC ) )  /\  ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j )
)  +  ( T  x.  ( C `  j ) ) ) )  ->  ( T  x.  ( ( ( C `
 j )  -  ( D `  j ) ) ^ 2 ) )  =  ( ( ( ( B `  j )  -  ( D `  j )
) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) )  -  ( ( ( A `  j
)  -  ( D `
 j ) ) ^ 2 ) ) ) ) )
67663impa 1200 . . . . 5  |-  ( ( ( ( A `  j )  e.  CC  /\  T  e.  CC )  /\  ( ( C `
 j )  e.  CC  /\  ( D `
 j )  e.  CC )  /\  ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) ) )  -> 
( T  x.  (
( ( C `  j )  -  ( D `  j )
) ^ 2 ) )  =  ( ( ( ( B `  j )  -  ( D `  j )
) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) )  -  ( ( ( A `  j
)  -  ( D `
 j ) ) ^ 2 ) ) ) ) )
6822, 27, 11, 15, 60, 67syl221anc 1275 . . . 4  |-  ( ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( T  x.  ( ( ( C `
 j )  -  ( D `  j ) ) ^ 2 ) )  =  ( ( ( ( B `  j )  -  ( D `  j )
) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) )  -  ( ( ( A `  j
)  -  ( D `
 j ) ) ^ 2 ) ) ) ) )
6968sumeq2dv 13757 . . 3  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  /\  ( T  e.  ( 0 [,] 1
)  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( T  x.  ( ( ( C `
 j )  -  ( D `  j ) ) ^ 2 ) )  =  sum_ j  e.  ( 1 ... N
) ( ( ( ( B `  j
)  -  ( D `
 j ) ) ^ 2 )  +  ( ( 1  -  T )  x.  (
( T  x.  (
( ( A `  j )  -  ( C `  j )
) ^ 2 ) )  -  ( ( ( A `  j
)  -  ( D `
 j ) ) ^ 2 ) ) ) ) )
7050, 69eqtr4d 2466 . 2  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  /\  ( T  e.  ( 0 [,] 1
)  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  ( sum_ j  e.  ( 1 ... N ) ( ( ( B `  j )  -  ( D `  j )
) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  sum_ j  e.  ( 1 ... N ) ( ( ( A `  j )  -  ( C `  j )
) ^ 2 ) )  -  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( D `  j ) ) ^
2 ) ) ) )  =  sum_ j  e.  ( 1 ... N
) ( T  x.  ( ( ( C `
 j )  -  ( D `  j ) ) ^ 2 ) ) )
7118, 70eqtr4d 2466 1  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  /\  ( T  e.  ( 0 [,] 1
)  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  ( T  x.  sum_ j  e.  ( 1 ... N
) ( ( ( C `  j )  -  ( D `  j ) ) ^
2 ) )  =  ( sum_ j  e.  ( 1 ... N ) ( ( ( B `
 j )  -  ( D `  j ) ) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  sum_ j  e.  ( 1 ... N ) ( ( ( A `  j )  -  ( C `  j )
) ^ 2 ) )  -  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( D `  j ) ) ^
2 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1868   A.wral 2775   class class class wbr 4420   ` cfv 5598  (class class class)co 6302   CCcc 9538   RRcr 9539   0cc0 9540   1c1 9541    + caddc 9543    x. cmul 9545    <_ cle 9677    - cmin 9861   NNcn 10610   2c2 10660   [,]cicc 11639   ...cfz 11785   ^cexp 12272   sum_csu 13740   EEcee 24905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594  ax-inf2 8149  ax-cnex 9596  ax-resscn 9597  ax-1cn 9598  ax-icn 9599  ax-addcl 9600  ax-addrcl 9601  ax-mulcl 9602  ax-mulrcl 9603  ax-mulcom 9604  ax-addass 9605  ax-mulass 9606  ax-distr 9607  ax-i2m1 9608  ax-1ne0 9609  ax-1rid 9610  ax-rnegex 9611  ax-rrecex 9612  ax-cnre 9613  ax-pre-lttri 9614  ax-pre-lttrn 9615  ax-pre-ltadd 9616  ax-pre-mulgt0 9617  ax-pre-sup 9618
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4761  df-id 4765  df-po 4771  df-so 4772  df-fr 4809  df-se 4810  df-we 4811  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-pred 5396  df-ord 5442  df-on 5443  df-lim 5444  df-suc 5445  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-isom 5607  df-riota 6264  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-om 6704  df-1st 6804  df-2nd 6805  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-oadd 7191  df-er 7368  df-map 7479  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-sup 7959  df-oi 8028  df-card 8375  df-pnf 9678  df-mnf 9679  df-xr 9680  df-ltxr 9681  df-le 9682  df-sub 9863  df-neg 9864  df-div 10271  df-nn 10611  df-2 10669  df-3 10670  df-n0 10871  df-z 10939  df-uz 11161  df-rp 11304  df-icc 11643  df-fz 11786  df-fzo 11917  df-seq 12214  df-exp 12273  df-hash 12516  df-cj 13151  df-re 13152  df-im 13153  df-sqrt 13287  df-abs 13288  df-clim 13540  df-sum 13741  df-ee 24908
This theorem is referenced by:  ax5seg  24955
  Copyright terms: Public domain W3C validator