MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seglem8 Structured version   Unicode version

Theorem ax5seglem8 24062
Description: Lemma for ax5seg 24064. Use the weak deduction theorem to eliminate the hypotheses from ax5seglem7 24061. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
ax5seglem8  |-  ( ( ( A  e.  CC  /\  T  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( T  x.  (
( C  -  D
) ^ 2 ) )  =  ( ( ( ( ( ( 1  -  T )  x.  A )  +  ( T  x.  C
) )  -  D
) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  (
( A  -  D
) ^ 2 ) ) ) ) )

Proof of Theorem ax5seglem8
StepHypRef Expression
1 oveq2 6303 . . . . . . 7  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( 1  -  T )  x.  A
)  =  ( ( 1  -  T )  x.  if ( A  e.  CC ,  A ,  0 ) ) )
21oveq1d 6310 . . . . . 6  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( ( 1  -  T )  x.  A )  +  ( T  x.  C ) )  =  ( ( ( 1  -  T
)  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( T  x.  C ) ) )
32oveq1d 6310 . . . . 5  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( ( ( 1  -  T )  x.  A )  +  ( T  x.  C
) )  -  D
)  =  ( ( ( ( 1  -  T )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( T  x.  C ) )  -  D ) )
43oveq1d 6310 . . . 4  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( ( ( ( 1  -  T
)  x.  A )  +  ( T  x.  C ) )  -  D ) ^ 2 )  =  ( ( ( ( ( 1  -  T )  x.  if ( A  e.  CC ,  A , 
0 ) )  +  ( T  x.  C
) )  -  D
) ^ 2 ) )
5 oveq1 6302 . . . . . . . 8  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( A  -  C
)  =  ( if ( A  e.  CC ,  A ,  0 )  -  C ) )
65oveq1d 6310 . . . . . . 7  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( A  -  C ) ^ 2 )  =  ( ( if ( A  e.  CC ,  A , 
0 )  -  C
) ^ 2 ) )
76oveq2d 6311 . . . . . 6  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( T  x.  (
( A  -  C
) ^ 2 ) )  =  ( T  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  C ) ^
2 ) ) )
8 oveq1 6302 . . . . . . 7  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( A  -  D
)  =  ( if ( A  e.  CC ,  A ,  0 )  -  D ) )
98oveq1d 6310 . . . . . 6  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( A  -  D ) ^ 2 )  =  ( ( if ( A  e.  CC ,  A , 
0 )  -  D
) ^ 2 ) )
107, 9oveq12d 6313 . . . . 5  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  (
( A  -  D
) ^ 2 ) )  =  ( ( T  x.  ( ( if ( A  e.  CC ,  A , 
0 )  -  C
) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A , 
0 )  -  D
) ^ 2 ) ) )
1110oveq2d 6311 . . . 4  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( 1  -  T )  x.  (
( T  x.  (
( A  -  C
) ^ 2 ) )  -  ( ( A  -  D ) ^ 2 ) ) )  =  ( ( 1  -  T )  x.  ( ( T  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  C ) ^
2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) ) ) )
124, 11oveq12d 6313 . . 3  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( ( ( ( ( 1  -  T )  x.  A
)  +  ( T  x.  C ) )  -  D ) ^
2 )  +  ( ( 1  -  T
)  x.  ( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  ( ( A  -  D ) ^
2 ) ) ) )  =  ( ( ( ( ( ( 1  -  T )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( T  x.  C ) )  -  D ) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  C ) ^
2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) ) ) ) )
1312eqeq2d 2481 . 2  |-  ( A  =  if ( A  e.  CC ,  A ,  0 )  -> 
( ( T  x.  ( ( C  -  D ) ^ 2 ) )  =  ( ( ( ( ( ( 1  -  T
)  x.  A )  +  ( T  x.  C ) )  -  D ) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A  -  C ) ^
2 ) )  -  ( ( A  -  D ) ^ 2 ) ) ) )  <-> 
( T  x.  (
( C  -  D
) ^ 2 ) )  =  ( ( ( ( ( ( 1  -  T )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( T  x.  C ) )  -  D ) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  C ) ^
2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) ) ) ) ) )
14 oveq1 6302 . . 3  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( T  x.  (
( C  -  D
) ^ 2 ) )  =  ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( C  -  D ) ^
2 ) ) )
15 oveq2 6303 . . . . . . . 8  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( 1  -  T
)  =  ( 1  -  if ( T  e.  CC ,  T ,  0 ) ) )
1615oveq1d 6310 . . . . . . 7  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( ( 1  -  T )  x.  if ( A  e.  CC ,  A ,  0 ) )  =  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) ) )
17 oveq1 6302 . . . . . . 7  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( T  x.  C
)  =  ( if ( T  e.  CC ,  T ,  0 )  x.  C ) )
1816, 17oveq12d 6313 . . . . . 6  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( ( ( 1  -  T )  x.  if ( A  e.  CC ,  A , 
0 ) )  +  ( T  x.  C
) )  =  ( ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  if ( A  e.  CC ,  A , 
0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  C ) ) )
1918oveq1d 6310 . . . . 5  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( ( ( ( 1  -  T )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( T  x.  C ) )  -  D )  =  ( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  C ) )  -  D ) )
2019oveq1d 6310 . . . 4  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( ( ( ( ( 1  -  T
)  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( T  x.  C ) )  -  D ) ^
2 )  =  ( ( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  C ) )  -  D ) ^
2 ) )
21 oveq1 6302 . . . . . 6  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( T  x.  (
( if ( A  e.  CC ,  A ,  0 )  -  C ) ^ 2 ) )  =  ( if ( T  e.  CC ,  T , 
0 )  x.  (
( if ( A  e.  CC ,  A ,  0 )  -  C ) ^ 2 ) ) )
2221oveq1d 6310 . . . . 5  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( ( T  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  C ) ^
2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) )  =  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  C ) ^
2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) ) )
2315, 22oveq12d 6313 . . . 4  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( ( 1  -  T )  x.  (
( T  x.  (
( if ( A  e.  CC ,  A ,  0 )  -  C ) ^ 2 ) )  -  (
( if ( A  e.  CC ,  A ,  0 )  -  D ) ^ 2 ) ) )  =  ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  C ) ^
2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) ) ) )
2420, 23oveq12d 6313 . . 3  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( ( ( ( ( ( 1  -  T )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( T  x.  C ) )  -  D ) ^
2 )  +  ( ( 1  -  T
)  x.  ( ( T  x.  ( ( if ( A  e.  CC ,  A , 
0 )  -  C
) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A , 
0 )  -  D
) ^ 2 ) ) ) )  =  ( ( ( ( ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  if ( A  e.  CC ,  A , 
0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  C ) )  -  D ) ^ 2 )  +  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  ( ( if ( T  e.  CC ,  T , 
0 )  x.  (
( if ( A  e.  CC ,  A ,  0 )  -  C ) ^ 2 ) )  -  (
( if ( A  e.  CC ,  A ,  0 )  -  D ) ^ 2 ) ) ) ) )
2514, 24eqeq12d 2489 . 2  |-  ( T  =  if ( T  e.  CC ,  T ,  0 )  -> 
( ( T  x.  ( ( C  -  D ) ^ 2 ) )  =  ( ( ( ( ( ( 1  -  T
)  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( T  x.  C ) )  -  D ) ^
2 )  +  ( ( 1  -  T
)  x.  ( ( T  x.  ( ( if ( A  e.  CC ,  A , 
0 )  -  C
) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A , 
0 )  -  D
) ^ 2 ) ) ) )  <->  ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( C  -  D ) ^
2 ) )  =  ( ( ( ( ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  if ( A  e.  CC ,  A , 
0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  C ) )  -  D ) ^ 2 )  +  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  ( ( if ( T  e.  CC ,  T , 
0 )  x.  (
( if ( A  e.  CC ,  A ,  0 )  -  C ) ^ 2 ) )  -  (
( if ( A  e.  CC ,  A ,  0 )  -  D ) ^ 2 ) ) ) ) ) )
26 oveq1 6302 . . . . 5  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( C  -  D
)  =  ( if ( C  e.  CC ,  C ,  0 )  -  D ) )
2726oveq1d 6310 . . . 4  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( ( C  -  D ) ^ 2 )  =  ( ( if ( C  e.  CC ,  C , 
0 )  -  D
) ^ 2 ) )
2827oveq2d 6311 . . 3  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( if ( T  e.  CC ,  T ,  0 )  x.  ( ( C  -  D ) ^ 2 ) )  =  ( if ( T  e.  CC ,  T , 
0 )  x.  (
( if ( C  e.  CC ,  C ,  0 )  -  D ) ^ 2 ) ) )
29 oveq2 6303 . . . . . . 7  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( if ( T  e.  CC ,  T ,  0 )  x.  C )  =  ( if ( T  e.  CC ,  T , 
0 )  x.  if ( C  e.  CC ,  C ,  0 ) ) )
3029oveq2d 6311 . . . . . 6  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  C ) )  =  ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C ,  0 ) ) ) )
3130oveq1d 6310 . . . . 5  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  C ) )  -  D )  =  ( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C ,  0 ) ) )  -  D ) )
3231oveq1d 6310 . . . 4  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( ( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  C ) )  -  D ) ^
2 )  =  ( ( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C ,  0 ) ) )  -  D ) ^ 2 ) )
33 oveq2 6303 . . . . . . . 8  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( if ( A  e.  CC ,  A ,  0 )  -  C )  =  ( if ( A  e.  CC ,  A , 
0 )  -  if ( C  e.  CC ,  C ,  0 ) ) )
3433oveq1d 6310 . . . . . . 7  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( ( if ( A  e.  CC ,  A ,  0 )  -  C ) ^
2 )  =  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )
3534oveq2d 6311 . . . . . 6  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  C ) ^
2 ) )  =  ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) ) )
3635oveq1d 6310 . . . . 5  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  C ) ^
2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) )  =  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) ) )
3736oveq2d 6311 . . . 4  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  C ) ^
2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) ) )  =  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) ) ) )
3832, 37oveq12d 6313 . . 3  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( ( ( ( ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  if ( A  e.  CC ,  A , 
0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  C ) )  -  D ) ^ 2 )  +  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  ( ( if ( T  e.  CC ,  T , 
0 )  x.  (
( if ( A  e.  CC ,  A ,  0 )  -  C ) ^ 2 ) )  -  (
( if ( A  e.  CC ,  A ,  0 )  -  D ) ^ 2 ) ) ) )  =  ( ( ( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C ,  0 ) ) )  -  D ) ^ 2 )  +  ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) ) ) ) )
3928, 38eqeq12d 2489 . 2  |-  ( C  =  if ( C  e.  CC ,  C ,  0 )  -> 
( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( C  -  D ) ^
2 ) )  =  ( ( ( ( ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  if ( A  e.  CC ,  A , 
0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  C ) )  -  D ) ^ 2 )  +  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  ( ( if ( T  e.  CC ,  T , 
0 )  x.  (
( if ( A  e.  CC ,  A ,  0 )  -  C ) ^ 2 ) )  -  (
( if ( A  e.  CC ,  A ,  0 )  -  D ) ^ 2 ) ) ) )  <-> 
( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( C  e.  CC ,  C ,  0 )  -  D ) ^
2 ) )  =  ( ( ( ( ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  if ( A  e.  CC ,  A , 
0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C , 
0 ) ) )  -  D ) ^
2 )  +  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  ( ( if ( T  e.  CC ,  T , 
0 )  x.  (
( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A , 
0 )  -  D
) ^ 2 ) ) ) ) ) )
40 oveq2 6303 . . . . 5  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( if ( C  e.  CC ,  C ,  0 )  -  D )  =  ( if ( C  e.  CC ,  C , 
0 )  -  if ( D  e.  CC ,  D ,  0 ) ) )
4140oveq1d 6310 . . . 4  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( ( if ( C  e.  CC ,  C ,  0 )  -  D ) ^
2 )  =  ( ( if ( C  e.  CC ,  C ,  0 )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 ) )
4241oveq2d 6311 . . 3  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( C  e.  CC ,  C ,  0 )  -  D ) ^
2 ) )  =  ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( C  e.  CC ,  C ,  0 )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 ) ) )
43 oveq2 6303 . . . . 5  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C ,  0 ) ) )  -  D )  =  ( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C ,  0 ) ) )  -  if ( D  e.  CC ,  D ,  0 ) ) )
4443oveq1d 6310 . . . 4  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( ( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C ,  0 ) ) )  -  D ) ^ 2 )  =  ( ( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C ,  0 ) ) )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 ) )
45 oveq2 6303 . . . . . . 7  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( if ( A  e.  CC ,  A ,  0 )  -  D )  =  ( if ( A  e.  CC ,  A , 
0 )  -  if ( D  e.  CC ,  D ,  0 ) ) )
4645oveq1d 6310 . . . . . 6  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 )  =  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 ) )
4746oveq2d 6311 . . . . 5  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) )  =  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 ) ) )
4847oveq2d 6311 . . . 4  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  D ) ^
2 ) ) )  =  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 ) ) ) )
4944, 48oveq12d 6313 . . 3  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( ( ( ( ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  if ( A  e.  CC ,  A , 
0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C , 
0 ) ) )  -  D ) ^
2 )  +  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  ( ( if ( T  e.  CC ,  T , 
0 )  x.  (
( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A , 
0 )  -  D
) ^ 2 ) ) ) )  =  ( ( ( ( ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  if ( A  e.  CC ,  A , 
0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C , 
0 ) ) )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 )  +  ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 ) ) ) ) )
5042, 49eqeq12d 2489 . 2  |-  ( D  =  if ( D  e.  CC ,  D ,  0 )  -> 
( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( C  e.  CC ,  C ,  0 )  -  D ) ^
2 ) )  =  ( ( ( ( ( ( 1  -  if ( T  e.  CC ,  T , 
0 ) )  x.  if ( A  e.  CC ,  A , 
0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C , 
0 ) ) )  -  D ) ^
2 )  +  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  ( ( if ( T  e.  CC ,  T , 
0 )  x.  (
( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A , 
0 )  -  D
) ^ 2 ) ) ) )  <->  ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( C  e.  CC ,  C ,  0 )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 ) )  =  ( ( ( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C ,  0 ) ) )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 )  +  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 ) ) ) ) ) )
51 0cn 9600 . . . 4  |-  0  e.  CC
5251elimel 4008 . . 3  |-  if ( A  e.  CC ,  A ,  0 )  e.  CC
5351elimel 4008 . . 3  |-  if ( T  e.  CC ,  T ,  0 )  e.  CC
5451elimel 4008 . . 3  |-  if ( C  e.  CC ,  C ,  0 )  e.  CC
5551elimel 4008 . . 3  |-  if ( D  e.  CC ,  D ,  0 )  e.  CC
5652, 53, 54, 55ax5seglem7 24061 . 2  |-  ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( C  e.  CC ,  C ,  0 )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 ) )  =  ( ( ( ( ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  if ( A  e.  CC ,  A ,  0 ) )  +  ( if ( T  e.  CC ,  T ,  0 )  x.  if ( C  e.  CC ,  C ,  0 ) ) )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 )  +  ( ( 1  -  if ( T  e.  CC ,  T ,  0 ) )  x.  ( ( if ( T  e.  CC ,  T ,  0 )  x.  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( C  e.  CC ,  C ,  0 ) ) ^ 2 ) )  -  ( ( if ( A  e.  CC ,  A ,  0 )  -  if ( D  e.  CC ,  D ,  0 ) ) ^ 2 ) ) ) )
5713, 25, 39, 50, 56dedth4h 4000 1  |-  ( ( ( A  e.  CC  /\  T  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( T  x.  (
( C  -  D
) ^ 2 ) )  =  ( ( ( ( ( ( 1  -  T )  x.  A )  +  ( T  x.  C
) )  -  D
) ^ 2 )  +  ( ( 1  -  T )  x.  ( ( T  x.  ( ( A  -  C ) ^ 2 ) )  -  (
( A  -  D
) ^ 2 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   ifcif 3945  (class class class)co 6295   CCcc 9502   0cc0 9504   1c1 9505    + caddc 9507    x. cmul 9509    - cmin 9817   2c2 10597   ^cexp 12146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-n0 10808  df-z 10877  df-uz 11095  df-seq 12088  df-exp 12147
This theorem is referenced by:  ax5seglem9  24063
  Copyright terms: Public domain W3C validator