Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax5seglem2 Unicode version

Theorem ax5seglem2 25772
Description: Lemma for ax5seg 25781. Rexpress another congruence sum given betweenness. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
ax5seglem2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( B `  j )  -  ( C `  j ) ) ^
2 )  =  ( ( ( 1  -  T ) ^ 2 )  x.  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) ) )
Distinct variable groups:    A, i,
j    B, i, j    C, i, j    i, N, j    T, i, j

Proof of Theorem ax5seglem2
StepHypRef Expression
1 simpl2l 1010 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  A  e.  ( EE `  N ) )
2 fveecn 25745 . . . . 5  |-  ( ( A  e.  ( EE
`  N )  /\  j  e.  ( 1 ... N ) )  ->  ( A `  j )  e.  CC )
31, 2sylancom 649 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( A `  j )  e.  CC )
4 simpl2r 1011 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  C  e.  ( EE `  N ) )
5 fveecn 25745 . . . . 5  |-  ( ( C  e.  ( EE
`  N )  /\  j  e.  ( 1 ... N ) )  ->  ( C `  j )  e.  CC )
64, 5sylancom 649 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( C `  j )  e.  CC )
7 0re 9047 . . . . . . . . . 10  |-  0  e.  RR
8 1re 9046 . . . . . . . . . 10  |-  1  e.  RR
97, 8elicc2i 10932 . . . . . . . . 9  |-  ( T  e.  ( 0 [,] 1 )  <->  ( T  e.  RR  /\  0  <_  T  /\  T  <_  1
) )
109simp1bi 972 . . . . . . . 8  |-  ( T  e.  ( 0 [,] 1 )  ->  T  e.  RR )
1110recnd 9070 . . . . . . 7  |-  ( T  e.  ( 0 [,] 1 )  ->  T  e.  CC )
1211adantr 452 . . . . . 6  |-  ( ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) )  ->  T  e.  CC )
13123ad2ant3 980 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  T  e.  CC )
1413adantr 452 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  T  e.  CC )
15 fveq2 5687 . . . . . . . 8  |-  ( i  =  j  ->  ( B `  i )  =  ( B `  j ) )
16 fveq2 5687 . . . . . . . . . 10  |-  ( i  =  j  ->  ( A `  i )  =  ( A `  j ) )
1716oveq2d 6056 . . . . . . . . 9  |-  ( i  =  j  ->  (
( 1  -  T
)  x.  ( A `
 i ) )  =  ( ( 1  -  T )  x.  ( A `  j
) ) )
18 fveq2 5687 . . . . . . . . . 10  |-  ( i  =  j  ->  ( C `  i )  =  ( C `  j ) )
1918oveq2d 6056 . . . . . . . . 9  |-  ( i  =  j  ->  ( T  x.  ( C `  i ) )  =  ( T  x.  ( C `  j )
) )
2017, 19oveq12d 6058 . . . . . . . 8  |-  ( i  =  j  ->  (
( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) ) )
2115, 20eqeq12d 2418 . . . . . . 7  |-  ( i  =  j  ->  (
( B `  i
)  =  ( ( ( 1  -  T
)  x.  ( A `
 i ) )  +  ( T  x.  ( C `  i ) ) )  <->  ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j )
)  +  ( T  x.  ( C `  j ) ) ) ) )
2221rspccva 3011 . . . . . 6  |-  ( ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  T
)  x.  ( A `
 i ) )  +  ( T  x.  ( C `  i ) ) )  /\  j  e.  ( 1 ... N
) )  ->  ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) ) )
2322adantll 695 . . . . 5  |-  ( ( ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) )  /\  j  e.  ( 1 ... N
) )  ->  ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) ) )
24233ad2antl3 1121 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j )
)  +  ( T  x.  ( C `  j ) ) ) )
25 oveq1 6047 . . . . . 6  |-  ( ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) )  ->  (
( B `  j
)  -  ( C `
 j ) )  =  ( ( ( ( 1  -  T
)  x.  ( A `
 j ) )  +  ( T  x.  ( C `  j ) ) )  -  ( C `  j )
) )
2625oveq1d 6055 . . . . 5  |-  ( ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) )  ->  (
( ( B `  j )  -  ( C `  j )
) ^ 2 )  =  ( ( ( ( ( 1  -  T )  x.  ( A `  j )
)  +  ( T  x.  ( C `  j ) ) )  -  ( C `  j ) ) ^
2 ) )
27 ax-1cn 9004 . . . . . . . . . . . 12  |-  1  e.  CC
28 subcl 9261 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  T  e.  CC )  ->  ( 1  -  T
)  e.  CC )
2927, 28mpan 652 . . . . . . . . . . 11  |-  ( T  e.  CC  ->  (
1  -  T )  e.  CC )
30293ad2ant3 980 . . . . . . . . . 10  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
1  -  T )  e.  CC )
31 simp1 957 . . . . . . . . . 10  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  ( A `  j )  e.  CC )
3230, 31mulcld 9064 . . . . . . . . 9  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( 1  -  T
)  x.  ( A `
 j ) )  e.  CC )
33 simp3 959 . . . . . . . . . 10  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  T  e.  CC )
34 simp2 958 . . . . . . . . . 10  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  ( C `  j )  e.  CC )
3533, 34mulcld 9064 . . . . . . . . 9  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  ( T  x.  ( C `  j ) )  e.  CC )
3632, 35, 34addsubassd 9387 . . . . . . . 8  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( ( 1  -  T )  x.  ( A `  j
) )  +  ( T  x.  ( C `
 j ) ) )  -  ( C `
 j ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( ( T  x.  ( C `  j ) )  -  ( C `
 j ) ) ) )
37 subdi 9423 . . . . . . . . . . 11  |-  ( ( ( 1  -  T
)  e.  CC  /\  ( A `  j )  e.  CC  /\  ( C `  j )  e.  CC )  ->  (
( 1  -  T
)  x.  ( ( A `  j )  -  ( C `  j ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  -  ( ( 1  -  T )  x.  ( C `  j )
) ) )
3829, 37syl3an1 1217 . . . . . . . . . 10  |-  ( ( T  e.  CC  /\  ( A `  j )  e.  CC  /\  ( C `  j )  e.  CC )  ->  (
( 1  -  T
)  x.  ( ( A `  j )  -  ( C `  j ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  -  ( ( 1  -  T )  x.  ( C `  j )
) ) )
39383coml 1160 . . . . . . . . 9  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( 1  -  T
)  x.  ( ( A `  j )  -  ( C `  j ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  -  ( ( 1  -  T )  x.  ( C `  j )
) ) )
40 subdir 9424 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  CC  /\  T  e.  CC  /\  ( C `  j )  e.  CC )  ->  (
( 1  -  T
)  x.  ( C `
 j ) )  =  ( ( 1  x.  ( C `  j ) )  -  ( T  x.  ( C `  j )
) ) )
4127, 40mp3an1 1266 . . . . . . . . . . . . 13  |-  ( ( T  e.  CC  /\  ( C `  j )  e.  CC )  -> 
( ( 1  -  T )  x.  ( C `  j )
)  =  ( ( 1  x.  ( C `
 j ) )  -  ( T  x.  ( C `  j ) ) ) )
4241ancoms 440 . . . . . . . . . . . 12  |-  ( ( ( C `  j
)  e.  CC  /\  T  e.  CC )  ->  ( ( 1  -  T )  x.  ( C `  j )
)  =  ( ( 1  x.  ( C `
 j ) )  -  ( T  x.  ( C `  j ) ) ) )
43423adant1 975 . . . . . . . . . . 11  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( 1  -  T
)  x.  ( C `
 j ) )  =  ( ( 1  x.  ( C `  j ) )  -  ( T  x.  ( C `  j )
) ) )
44 mulid2 9045 . . . . . . . . . . . . 13  |-  ( ( C `  j )  e.  CC  ->  (
1  x.  ( C `
 j ) )  =  ( C `  j ) )
4544oveq1d 6055 . . . . . . . . . . . 12  |-  ( ( C `  j )  e.  CC  ->  (
( 1  x.  ( C `  j )
)  -  ( T  x.  ( C `  j ) ) )  =  ( ( C `
 j )  -  ( T  x.  ( C `  j )
) ) )
46453ad2ant2 979 . . . . . . . . . . 11  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( 1  x.  ( C `  j )
)  -  ( T  x.  ( C `  j ) ) )  =  ( ( C `
 j )  -  ( T  x.  ( C `  j )
) ) )
4743, 46eqtrd 2436 . . . . . . . . . 10  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( 1  -  T
)  x.  ( C `
 j ) )  =  ( ( C `
 j )  -  ( T  x.  ( C `  j )
) ) )
4847oveq2d 6056 . . . . . . . . 9  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( 1  -  T )  x.  ( A `  j )
)  -  ( ( 1  -  T )  x.  ( C `  j ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  -  ( ( C `  j )  -  ( T  x.  ( C `  j ) ) ) ) )
4932, 34, 35subsub2d 9396 . . . . . . . . 9  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( 1  -  T )  x.  ( A `  j )
)  -  ( ( C `  j )  -  ( T  x.  ( C `  j ) ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j
) )  +  ( ( T  x.  ( C `  j )
)  -  ( C `
 j ) ) ) )
5039, 48, 493eqtrd 2440 . . . . . . . 8  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( 1  -  T
)  x.  ( ( A `  j )  -  ( C `  j ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( ( T  x.  ( C `  j ) )  -  ( C `
 j ) ) ) )
5136, 50eqtr4d 2439 . . . . . . 7  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( ( 1  -  T )  x.  ( A `  j
) )  +  ( T  x.  ( C `
 j ) ) )  -  ( C `
 j ) )  =  ( ( 1  -  T )  x.  ( ( A `  j )  -  ( C `  j )
) ) )
5251oveq1d 6055 . . . . . 6  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) )  -  ( C `  j )
) ^ 2 )  =  ( ( ( 1  -  T )  x.  ( ( A `
 j )  -  ( C `  j ) ) ) ^ 2 ) )
53 subcl 9261 . . . . . . . 8  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC )  -> 
( ( A `  j )  -  ( C `  j )
)  e.  CC )
54533adant3 977 . . . . . . 7  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( A `  j
)  -  ( C `
 j ) )  e.  CC )
5530, 54sqmuld 11490 . . . . . 6  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( 1  -  T )  x.  (
( A `  j
)  -  ( C `
 j ) ) ) ^ 2 )  =  ( ( ( 1  -  T ) ^ 2 )  x.  ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) ) )
5652, 55eqtrd 2436 . . . . 5  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) )  -  ( C `  j )
) ^ 2 )  =  ( ( ( 1  -  T ) ^ 2 )  x.  ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) ) )
5726, 56sylan9eqr 2458 . . . 4  |-  ( ( ( ( A `  j )  e.  CC  /\  ( C `  j
)  e.  CC  /\  T  e.  CC )  /\  ( B `  j
)  =  ( ( ( 1  -  T
)  x.  ( A `
 j ) )  +  ( T  x.  ( C `  j ) ) ) )  -> 
( ( ( B `
 j )  -  ( C `  j ) ) ^ 2 )  =  ( ( ( 1  -  T ) ^ 2 )  x.  ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) ) )
583, 6, 14, 24, 57syl31anc 1187 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( (
( B `  j
)  -  ( C `
 j ) ) ^ 2 )  =  ( ( ( 1  -  T ) ^
2 )  x.  (
( ( A `  j )  -  ( C `  j )
) ^ 2 ) ) )
5958sumeq2dv 12452 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( B `  j )  -  ( C `  j ) ) ^
2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( 1  -  T ) ^ 2 )  x.  ( ( ( A `  j
)  -  ( C `
 j ) ) ^ 2 ) ) )
60 fzfid 11267 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  (
1 ... N )  e. 
Fin )
61 resubcl 9321 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  T  e.  RR )  ->  ( 1  -  T
)  e.  RR )
628, 10, 61sylancr 645 . . . . . . 7  |-  ( T  e.  ( 0 [,] 1 )  ->  (
1  -  T )  e.  RR )
6362resqcld 11504 . . . . . 6  |-  ( T  e.  ( 0 [,] 1 )  ->  (
( 1  -  T
) ^ 2 )  e.  RR )
6463recnd 9070 . . . . 5  |-  ( T  e.  ( 0 [,] 1 )  ->  (
( 1  -  T
) ^ 2 )  e.  CC )
6564adantr 452 . . . 4  |-  ( ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) )  -> 
( ( 1  -  T ) ^ 2 )  e.  CC )
66653ad2ant3 980 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  (
( 1  -  T
) ^ 2 )  e.  CC )
6723adant1 975 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  j  e.  ( 1 ... N
) )  ->  ( A `  j )  e.  CC )
68673adant2r 1179 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  j  e.  ( 1 ... N ) )  ->  ( A `  j )  e.  CC )
6953adant1 975 . . . . . . . 8  |-  ( ( N  e.  NN  /\  C  e.  ( EE `  N )  /\  j  e.  ( 1 ... N
) )  ->  ( C `  j )  e.  CC )
70693adant2l 1178 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  j  e.  ( 1 ... N ) )  ->  ( C `  j )  e.  CC )
7168, 70subcld 9367 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  j  e.  ( 1 ... N ) )  ->  ( ( A `
 j )  -  ( C `  j ) )  e.  CC )
7271sqcld 11476 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  j  e.  ( 1 ... N ) )  ->  ( ( ( A `  j )  -  ( C `  j ) ) ^
2 )  e.  CC )
73723expa 1153 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  j  e.  ( 1 ... N
) )  ->  (
( ( A `  j )  -  ( C `  j )
) ^ 2 )  e.  CC )
74733adantl3 1115 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( (
( A `  j
)  -  ( C `
 j ) ) ^ 2 )  e.  CC )
7560, 66, 74fsummulc2 12522 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  (
( ( 1  -  T ) ^ 2 )  x.  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) )  = 
sum_ j  e.  ( 1 ... N ) ( ( ( 1  -  T ) ^
2 )  x.  (
( ( A `  j )  -  ( C `  j )
) ^ 2 ) ) )
7659, 75eqtr4d 2439 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( B `  j )  -  ( C `  j ) ) ^
2 )  =  ( ( ( 1  -  T ) ^ 2 )  x.  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    <_ cle 9077    - cmin 9247   NNcn 9956   2c2 10005   [,]cicc 10875   ...cfz 10999   ^cexp 11337   sum_csu 12434   EEcee 25731
This theorem is referenced by:  ax5seglem3  25774
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-icc 10879  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-sum 12435  df-ee 25734
  Copyright terms: Public domain W3C validator