MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seglem2 Structured version   Unicode version

Theorem ax5seglem2 23328
Description: Lemma for ax5seg 23337. Rexpress another congruence sum given betweenness. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
ax5seglem2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( B `  j )  -  ( C `  j ) ) ^
2 )  =  ( ( ( 1  -  T ) ^ 2 )  x.  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) ) )
Distinct variable groups:    A, i,
j    B, i, j    C, i, j    i, N, j    T, i, j

Proof of Theorem ax5seglem2
StepHypRef Expression
1 simpl2l 1041 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  A  e.  ( EE `  N ) )
2 fveecn 23301 . . . . 5  |-  ( ( A  e.  ( EE
`  N )  /\  j  e.  ( 1 ... N ) )  ->  ( A `  j )  e.  CC )
31, 2sylancom 667 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( A `  j )  e.  CC )
4 simpl2r 1042 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  C  e.  ( EE `  N ) )
5 fveecn 23301 . . . . 5  |-  ( ( C  e.  ( EE
`  N )  /\  j  e.  ( 1 ... N ) )  ->  ( C `  j )  e.  CC )
64, 5sylancom 667 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( C `  j )  e.  CC )
7 0re 9498 . . . . . . . . . 10  |-  0  e.  RR
8 1re 9497 . . . . . . . . . 10  |-  1  e.  RR
97, 8elicc2i 11473 . . . . . . . . 9  |-  ( T  e.  ( 0 [,] 1 )  <->  ( T  e.  RR  /\  0  <_  T  /\  T  <_  1
) )
109simp1bi 1003 . . . . . . . 8  |-  ( T  e.  ( 0 [,] 1 )  ->  T  e.  RR )
1110recnd 9524 . . . . . . 7  |-  ( T  e.  ( 0 [,] 1 )  ->  T  e.  CC )
1211adantr 465 . . . . . 6  |-  ( ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) )  ->  T  e.  CC )
13123ad2ant3 1011 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  T  e.  CC )
1413adantr 465 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  T  e.  CC )
15 fveq2 5800 . . . . . . . 8  |-  ( i  =  j  ->  ( B `  i )  =  ( B `  j ) )
16 fveq2 5800 . . . . . . . . . 10  |-  ( i  =  j  ->  ( A `  i )  =  ( A `  j ) )
1716oveq2d 6217 . . . . . . . . 9  |-  ( i  =  j  ->  (
( 1  -  T
)  x.  ( A `
 i ) )  =  ( ( 1  -  T )  x.  ( A `  j
) ) )
18 fveq2 5800 . . . . . . . . . 10  |-  ( i  =  j  ->  ( C `  i )  =  ( C `  j ) )
1918oveq2d 6217 . . . . . . . . 9  |-  ( i  =  j  ->  ( T  x.  ( C `  i ) )  =  ( T  x.  ( C `  j )
) )
2017, 19oveq12d 6219 . . . . . . . 8  |-  ( i  =  j  ->  (
( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) ) )
2115, 20eqeq12d 2476 . . . . . . 7  |-  ( i  =  j  ->  (
( B `  i
)  =  ( ( ( 1  -  T
)  x.  ( A `
 i ) )  +  ( T  x.  ( C `  i ) ) )  <->  ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j )
)  +  ( T  x.  ( C `  j ) ) ) ) )
2221rspccva 3178 . . . . . 6  |-  ( ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  T
)  x.  ( A `
 i ) )  +  ( T  x.  ( C `  i ) ) )  /\  j  e.  ( 1 ... N
) )  ->  ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) ) )
2322adantll 713 . . . . 5  |-  ( ( ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) )  /\  j  e.  ( 1 ... N
) )  ->  ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) ) )
24233ad2antl3 1152 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j )
)  +  ( T  x.  ( C `  j ) ) ) )
25 oveq1 6208 . . . . . 6  |-  ( ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) )  ->  (
( B `  j
)  -  ( C `
 j ) )  =  ( ( ( ( 1  -  T
)  x.  ( A `
 j ) )  +  ( T  x.  ( C `  j ) ) )  -  ( C `  j )
) )
2625oveq1d 6216 . . . . 5  |-  ( ( B `  j )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) )  ->  (
( ( B `  j )  -  ( C `  j )
) ^ 2 )  =  ( ( ( ( ( 1  -  T )  x.  ( A `  j )
)  +  ( T  x.  ( C `  j ) ) )  -  ( C `  j ) ) ^
2 ) )
27 ax-1cn 9452 . . . . . . . . . . . 12  |-  1  e.  CC
28 subcl 9721 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  T  e.  CC )  ->  ( 1  -  T
)  e.  CC )
2927, 28mpan 670 . . . . . . . . . . 11  |-  ( T  e.  CC  ->  (
1  -  T )  e.  CC )
30293ad2ant3 1011 . . . . . . . . . 10  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
1  -  T )  e.  CC )
31 simp1 988 . . . . . . . . . 10  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  ( A `  j )  e.  CC )
3230, 31mulcld 9518 . . . . . . . . 9  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( 1  -  T
)  x.  ( A `
 j ) )  e.  CC )
33 simp3 990 . . . . . . . . . 10  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  T  e.  CC )
34 simp2 989 . . . . . . . . . 10  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  ( C `  j )  e.  CC )
3533, 34mulcld 9518 . . . . . . . . 9  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  ( T  x.  ( C `  j ) )  e.  CC )
3632, 35, 34addsubassd 9851 . . . . . . . 8  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( ( 1  -  T )  x.  ( A `  j
) )  +  ( T  x.  ( C `
 j ) ) )  -  ( C `
 j ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( ( T  x.  ( C `  j ) )  -  ( C `
 j ) ) ) )
37 subdi 9890 . . . . . . . . . . 11  |-  ( ( ( 1  -  T
)  e.  CC  /\  ( A `  j )  e.  CC  /\  ( C `  j )  e.  CC )  ->  (
( 1  -  T
)  x.  ( ( A `  j )  -  ( C `  j ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  -  ( ( 1  -  T )  x.  ( C `  j )
) ) )
3829, 37syl3an1 1252 . . . . . . . . . 10  |-  ( ( T  e.  CC  /\  ( A `  j )  e.  CC  /\  ( C `  j )  e.  CC )  ->  (
( 1  -  T
)  x.  ( ( A `  j )  -  ( C `  j ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  -  ( ( 1  -  T )  x.  ( C `  j )
) ) )
39383coml 1195 . . . . . . . . 9  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( 1  -  T
)  x.  ( ( A `  j )  -  ( C `  j ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  -  ( ( 1  -  T )  x.  ( C `  j )
) ) )
40 subdir 9891 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  CC  /\  T  e.  CC  /\  ( C `  j )  e.  CC )  ->  (
( 1  -  T
)  x.  ( C `
 j ) )  =  ( ( 1  x.  ( C `  j ) )  -  ( T  x.  ( C `  j )
) ) )
4127, 40mp3an1 1302 . . . . . . . . . . . . 13  |-  ( ( T  e.  CC  /\  ( C `  j )  e.  CC )  -> 
( ( 1  -  T )  x.  ( C `  j )
)  =  ( ( 1  x.  ( C `
 j ) )  -  ( T  x.  ( C `  j ) ) ) )
4241ancoms 453 . . . . . . . . . . . 12  |-  ( ( ( C `  j
)  e.  CC  /\  T  e.  CC )  ->  ( ( 1  -  T )  x.  ( C `  j )
)  =  ( ( 1  x.  ( C `
 j ) )  -  ( T  x.  ( C `  j ) ) ) )
43423adant1 1006 . . . . . . . . . . 11  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( 1  -  T
)  x.  ( C `
 j ) )  =  ( ( 1  x.  ( C `  j ) )  -  ( T  x.  ( C `  j )
) ) )
44 mulid2 9496 . . . . . . . . . . . . 13  |-  ( ( C `  j )  e.  CC  ->  (
1  x.  ( C `
 j ) )  =  ( C `  j ) )
4544oveq1d 6216 . . . . . . . . . . . 12  |-  ( ( C `  j )  e.  CC  ->  (
( 1  x.  ( C `  j )
)  -  ( T  x.  ( C `  j ) ) )  =  ( ( C `
 j )  -  ( T  x.  ( C `  j )
) ) )
46453ad2ant2 1010 . . . . . . . . . . 11  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( 1  x.  ( C `  j )
)  -  ( T  x.  ( C `  j ) ) )  =  ( ( C `
 j )  -  ( T  x.  ( C `  j )
) ) )
4743, 46eqtrd 2495 . . . . . . . . . 10  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( 1  -  T
)  x.  ( C `
 j ) )  =  ( ( C `
 j )  -  ( T  x.  ( C `  j )
) ) )
4847oveq2d 6217 . . . . . . . . 9  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( 1  -  T )  x.  ( A `  j )
)  -  ( ( 1  -  T )  x.  ( C `  j ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  -  ( ( C `  j )  -  ( T  x.  ( C `  j ) ) ) ) )
4932, 34, 35subsub2d 9860 . . . . . . . . 9  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( 1  -  T )  x.  ( A `  j )
)  -  ( ( C `  j )  -  ( T  x.  ( C `  j ) ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j
) )  +  ( ( T  x.  ( C `  j )
)  -  ( C `
 j ) ) ) )
5039, 48, 493eqtrd 2499 . . . . . . . 8  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( 1  -  T
)  x.  ( ( A `  j )  -  ( C `  j ) ) )  =  ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( ( T  x.  ( C `  j ) )  -  ( C `
 j ) ) ) )
5136, 50eqtr4d 2498 . . . . . . 7  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( ( 1  -  T )  x.  ( A `  j
) )  +  ( T  x.  ( C `
 j ) ) )  -  ( C `
 j ) )  =  ( ( 1  -  T )  x.  ( ( A `  j )  -  ( C `  j )
) ) )
5251oveq1d 6216 . . . . . 6  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) )  -  ( C `  j )
) ^ 2 )  =  ( ( ( 1  -  T )  x.  ( ( A `
 j )  -  ( C `  j ) ) ) ^ 2 ) )
53 subcl 9721 . . . . . . . 8  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC )  -> 
( ( A `  j )  -  ( C `  j )
)  e.  CC )
54533adant3 1008 . . . . . . 7  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( A `  j
)  -  ( C `
 j ) )  e.  CC )
5530, 54sqmuld 12138 . . . . . 6  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( 1  -  T )  x.  (
( A `  j
)  -  ( C `
 j ) ) ) ^ 2 )  =  ( ( ( 1  -  T ) ^ 2 )  x.  ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) ) )
5652, 55eqtrd 2495 . . . . 5  |-  ( ( ( A `  j
)  e.  CC  /\  ( C `  j )  e.  CC  /\  T  e.  CC )  ->  (
( ( ( ( 1  -  T )  x.  ( A `  j ) )  +  ( T  x.  ( C `  j )
) )  -  ( C `  j )
) ^ 2 )  =  ( ( ( 1  -  T ) ^ 2 )  x.  ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) ) )
5726, 56sylan9eqr 2517 . . . 4  |-  ( ( ( ( A `  j )  e.  CC  /\  ( C `  j
)  e.  CC  /\  T  e.  CC )  /\  ( B `  j
)  =  ( ( ( 1  -  T
)  x.  ( A `
 j ) )  +  ( T  x.  ( C `  j ) ) ) )  -> 
( ( ( B `
 j )  -  ( C `  j ) ) ^ 2 )  =  ( ( ( 1  -  T ) ^ 2 )  x.  ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) ) )
583, 6, 14, 24, 57syl31anc 1222 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( (
( B `  j
)  -  ( C `
 j ) ) ^ 2 )  =  ( ( ( 1  -  T ) ^
2 )  x.  (
( ( A `  j )  -  ( C `  j )
) ^ 2 ) ) )
5958sumeq2dv 13299 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( B `  j )  -  ( C `  j ) ) ^
2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( 1  -  T ) ^ 2 )  x.  ( ( ( A `  j
)  -  ( C `
 j ) ) ^ 2 ) ) )
60 fzfid 11913 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  (
1 ... N )  e. 
Fin )
61 resubcl 9785 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  T  e.  RR )  ->  ( 1  -  T
)  e.  RR )
628, 10, 61sylancr 663 . . . . . . 7  |-  ( T  e.  ( 0 [,] 1 )  ->  (
1  -  T )  e.  RR )
6362resqcld 12152 . . . . . 6  |-  ( T  e.  ( 0 [,] 1 )  ->  (
( 1  -  T
) ^ 2 )  e.  RR )
6463recnd 9524 . . . . 5  |-  ( T  e.  ( 0 [,] 1 )  ->  (
( 1  -  T
) ^ 2 )  e.  CC )
6564adantr 465 . . . 4  |-  ( ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) )  -> 
( ( 1  -  T ) ^ 2 )  e.  CC )
66653ad2ant3 1011 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  (
( 1  -  T
) ^ 2 )  e.  CC )
6723adant1 1006 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  j  e.  ( 1 ... N
) )  ->  ( A `  j )  e.  CC )
68673adant2r 1214 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  j  e.  ( 1 ... N ) )  ->  ( A `  j )  e.  CC )
6953adant1 1006 . . . . . . . 8  |-  ( ( N  e.  NN  /\  C  e.  ( EE `  N )  /\  j  e.  ( 1 ... N
) )  ->  ( C `  j )  e.  CC )
70693adant2l 1213 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  j  e.  ( 1 ... N ) )  ->  ( C `  j )  e.  CC )
7168, 70subcld 9831 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  j  e.  ( 1 ... N ) )  ->  ( ( A `
 j )  -  ( C `  j ) )  e.  CC )
7271sqcld 12124 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  j  e.  ( 1 ... N ) )  ->  ( ( ( A `  j )  -  ( C `  j ) ) ^
2 )  e.  CC )
73723expa 1188 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  j  e.  ( 1 ... N
) )  ->  (
( ( A `  j )  -  ( C `  j )
) ^ 2 )  e.  CC )
74733adantl3 1146 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  ( 0 [,] 1 )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i ) )  +  ( T  x.  ( C `  i )
) ) ) )  /\  j  e.  ( 1 ... N ) )  ->  ( (
( A `  j
)  -  ( C `
 j ) ) ^ 2 )  e.  CC )
7560, 66, 74fsummulc2 13370 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  (
( ( 1  -  T ) ^ 2 )  x.  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) )  = 
sum_ j  e.  ( 1 ... N ) ( ( ( 1  -  T ) ^
2 )  x.  (
( ( A `  j )  -  ( C `  j )
) ^ 2 ) ) )
7659, 75eqtr4d 2498 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( T  e.  (
0 [,] 1 )  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  T )  x.  ( A `  i )
)  +  ( T  x.  ( C `  i ) ) ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( B `  j )  -  ( C `  j ) ) ^
2 )  =  ( ( ( 1  -  T ) ^ 2 )  x.  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2799   class class class wbr 4401   ` cfv 5527  (class class class)co 6201   CCcc 9392   RRcr 9393   0cc0 9394   1c1 9395    + caddc 9397    x. cmul 9399    <_ cle 9531    - cmin 9707   NNcn 10434   2c2 10483   [,]cicc 11415   ...cfz 11555   ^cexp 11983   sum_csu 13282   EEcee 23287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-inf2 7959  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471  ax-pre-sup 9472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-int 4238  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-se 4789  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-isom 5536  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-1st 6688  df-2nd 6689  df-recs 6943  df-rdg 6977  df-1o 7031  df-oadd 7035  df-er 7212  df-map 7327  df-en 7422  df-dom 7423  df-sdom 7424  df-fin 7425  df-sup 7803  df-oi 7836  df-card 8221  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-div 10106  df-nn 10435  df-2 10492  df-3 10493  df-n0 10692  df-z 10759  df-uz 10974  df-rp 11104  df-icc 11419  df-fz 11556  df-fzo 11667  df-seq 11925  df-exp 11984  df-hash 12222  df-cj 12707  df-re 12708  df-im 12709  df-sqr 12843  df-abs 12844  df-clim 13085  df-sum 13283  df-ee 23290
This theorem is referenced by:  ax5seglem3  23330
  Copyright terms: Public domain W3C validator