MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax4 Unicode version

Theorem ax4 2195
Description: This theorem repeats sp 1759 under the name ax4 2195, so that the metamath program's "verify markup" command will check that it matches axiom scheme ax-4 2185. It is preferred that references to this theorem use the name sp 1759. (Contributed by NM, 18-Aug-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ax4  |-  ( A. x ph  ->  ph )

Proof of Theorem ax4
StepHypRef Expression
1 sp 1759 1  |-  ( A. x ph  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1546
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-11 1757
This theorem depends on definitions:  df-bi 178  df-ex 1548
  Copyright terms: Public domain W3C validator