Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax16NEW7 Unicode version

Theorem ax16NEW7 29253
Description: Proof of older axiom ax-16 2194. (Contributed by NM, 8-Nov-2006.) (Revised by NM, 22-Sep-2017.)
Assertion
Ref Expression
ax16NEW7  |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem ax16NEW7
StepHypRef Expression
1 a16gNEW7 29250 1  |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1546
This theorem is referenced by:  a16nfNEW7  29254  ax11vNEW7  29296  hbs1NEW7  29306
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-11 1757  ax-12 1946  ax-7v 29148
This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1548  df-nf 1551
  Copyright terms: Public domain W3C validator