HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvass Unicode version

Axiom ax-hvass 21412
Description: Vector addition is associative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvass  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( A  +h  B
)  +h  C )  =  ( A  +h  ( B  +h  C
) ) )

Detailed syntax breakdown of Axiom ax-hvass
StepHypRef Expression
1 cA . . . 4  class  A
2 chil 21329 . . . 4  class  ~H
31, 2wcel 1621 . . 3  wff  A  e. 
~H
4 cB . . . 4  class  B
54, 2wcel 1621 . . 3  wff  B  e. 
~H
6 cC . . . 4  class  C
76, 2wcel 1621 . . 3  wff  C  e. 
~H
83, 5, 7w3a 939 . 2  wff  ( A  e.  ~H  /\  B  e.  ~H  /\  C  e. 
~H )
9 cva 21330 . . . . 5  class  +h
101, 4, 9co 5710 . . . 4  class  ( A  +h  B )
1110, 6, 9co 5710 . . 3  class  ( ( A  +h  B )  +h  C )
124, 6, 9co 5710 . . . 4  class  ( B  +h  C )
131, 12, 9co 5710 . . 3  class  ( A  +h  ( B  +h  C ) )
1411, 13wceq 1619 . 2  wff  ( ( A  +h  B )  +h  C )  =  ( A  +h  ( B  +h  C ) )
158, 14wi 6 1  wff  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( A  +h  B
)  +h  C )  =  ( A  +h  ( B  +h  C
) ) )
Colors of variables: wff set class
This axiom is referenced by:  hvadd32  21443  hvadd12  21444  hvadd4  21445  hvpncan  21448  hvaddsubass  21450  hvassi  21462  hilablo  21569  spanunsni  21988  hoaddassi  22186
  Copyright terms: Public domain W3C validator