HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hcompl Structured version   Unicode version

Axiom ax-hcompl 26317
Description: Completeness of a Hilbert space. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hcompl  |-  ( F  e.  Cauchy  ->  E. x  e.  ~H  F  ~~>v  x )
Distinct variable group:    x, F

Detailed syntax breakdown of Axiom ax-hcompl
StepHypRef Expression
1 cF . . 3  class  F
2 ccau 26041 . . 3  class  Cauchy
31, 2wcel 1823 . 2  wff  F  e. 
Cauchy
4 vx . . . . 5  setvar  x
54cv 1397 . . . 4  class  x
6 chli 26042 . . . 4  class  ~~>v
71, 5, 6wbr 4439 . . 3  wff  F  ~~>v  x
8 chil 26034 . . 3  class  ~H
97, 4, 8wrex 2805 . 2  wff  E. x  e.  ~H  F  ~~>v  x
103, 9wi 4 1  wff  ( F  e.  Cauchy  ->  E. x  e.  ~H  F  ~~>v  x )
Colors of variables: wff setvar class
This axiom is referenced by:  hhcms  26318  isch3  26357  hhsscms  26393  occllem  26419  occl  26420  chscllem2  26754
  Copyright terms: Public domain W3C validator