HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hcompl Structured version   Unicode version

Axiom ax-hcompl 25795
Description: Completeness of a Hilbert space. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hcompl  |-  ( F  e.  Cauchy  ->  E. x  e.  ~H  F  ~~>v  x )
Distinct variable group:    x, F

Detailed syntax breakdown of Axiom ax-hcompl
StepHypRef Expression
1 cF . . 3  class  F
2 ccau 25519 . . 3  class  Cauchy
31, 2wcel 1767 . 2  wff  F  e. 
Cauchy
4 vx . . . . 5  setvar  x
54cv 1378 . . . 4  class  x
6 chli 25520 . . . 4  class  ~~>v
71, 5, 6wbr 4447 . . 3  wff  F  ~~>v  x
8 chil 25512 . . 3  class  ~H
97, 4, 8wrex 2815 . 2  wff  E. x  e.  ~H  F  ~~>v  x
103, 9wi 4 1  wff  ( F  e.  Cauchy  ->  E. x  e.  ~H  F  ~~>v  x )
Colors of variables: wff setvar class
This axiom is referenced by:  hhcms  25796  isch3  25835  hhsscms  25871  occllem  25897  occl  25898  chscllem2  26232
  Copyright terms: Public domain W3C validator