Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax-c9 Structured version   Unicode version

Axiom ax-c9 32431
Description: Axiom of Quantifier Introduction. One of the equality and substitution axioms of predicate calculus with equality. Informally, it says that whenever  z is distinct from  x and  y, and  x  =  y is true, then  x  =  y quantified with  z is also true. In other words,  z is irrelevant to the truth of 
x  =  y. Axiom scheme C9' in [Megill] p. 448 (p. 16 of the preprint). It apparently does not otherwise appear in the literature but is easily proved from textbook predicate calculus by cases.

This axiom is obsolete and should no longer be used. It is proved above as theorem axc9 2105. (Contributed by NM, 10-Jan-1993.) (New usage is discouraged.)

Assertion
Ref Expression
ax-c9  |-  ( -. 
A. z  z  =  x  ->  ( -.  A. z  z  =  y  ->  ( x  =  y  ->  A. z  x  =  y )
) )

Detailed syntax breakdown of Axiom ax-c9
StepHypRef Expression
1 vz . . . . 5  setvar  z
2 vx . . . . 5  setvar  x
31, 2weq 1784 . . . 4  wff  z  =  x
43, 1wal 1435 . . 3  wff  A. z 
z  =  x
54wn 3 . 2  wff  -.  A. z  z  =  x
6 vy . . . . . 6  setvar  y
71, 6weq 1784 . . . . 5  wff  z  =  y
87, 1wal 1435 . . . 4  wff  A. z 
z  =  y
98wn 3 . . 3  wff  -.  A. z  z  =  y
102, 6weq 1784 . . . 4  wff  x  =  y
1110, 1wal 1435 . . . 4  wff  A. z  x  =  y
1210, 11wi 4 . . 3  wff  ( x  =  y  ->  A. z  x  =  y )
139, 12wi 4 . 2  wff  ( -. 
A. z  z  =  y  ->  ( x  =  y  ->  A. z  x  =  y )
)
145, 13wi 4 1  wff  ( -. 
A. z  z  =  x  ->  ( -.  A. z  z  =  y  ->  ( x  =  y  ->  A. z  x  =  y )
) )
Colors of variables: wff setvar class
This axiom is referenced by:  hbae-o  32442  ax13fromc9  32445  equid1  32447  hbequid  32449  equid1ALT  32465  dvelimf-o  32469  ax5eq  32472
  Copyright terms: Public domain W3C validator