MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  avglt2 Structured version   Unicode version

Theorem avglt2 10675
Description: Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014.)
Assertion
Ref Expression
avglt2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( ( A  +  B
)  /  2 )  <  B ) )

Proof of Theorem avglt2
StepHypRef Expression
1 simpr 461 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  RR )
21recnd 9524 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  CC )
3 2times 10552 . . . 4  |-  ( B  e.  CC  ->  (
2  x.  B )  =  ( B  +  B ) )
42, 3syl 16 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2  x.  B
)  =  ( B  +  B ) )
54breq2d 4413 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  B )  <  (
2  x.  B )  <-> 
( A  +  B
)  <  ( B  +  B ) ) )
6 readdcl 9477 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
7 2re 10503 . . . . 5  |-  2  e.  RR
8 2pos 10525 . . . . 5  |-  0  <  2
97, 8pm3.2i 455 . . . 4  |-  ( 2  e.  RR  /\  0  <  2 )
109a1i 11 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2  e.  RR  /\  0  <  2 ) )
11 ltdivmul 10316 . . 3  |-  ( ( ( A  +  B
)  e.  RR  /\  B  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( ( A  +  B )  /  2 )  < 
B  <->  ( A  +  B )  <  (
2  x.  B ) ) )
126, 1, 10, 11syl3anc 1219 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  B )  / 
2 )  <  B  <->  ( A  +  B )  <  ( 2  x.  B ) ) )
13 ltadd1 9918 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( A  +  B )  <  ( B  +  B )
) )
14133anidm23 1278 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( A  +  B )  <  ( B  +  B ) ) )
155, 12, 143bitr4rd 286 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( ( A  +  B
)  /  2 )  <  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   class class class wbr 4401  (class class class)co 6201   CCcc 9392   RRcr 9393   0cc0 9394    + caddc 9397    x. cmul 9399    < clt 9530    / cdiv 10105   2c2 10483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-po 4750  df-so 4751  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-er 7212  df-en 7422  df-dom 7423  df-sdom 7424  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-div 10106  df-2 10492
This theorem is referenced by:  avgle1  10676  geomulcvg  13455  ruclem2  13633  ruclem3  13634  dvferm1lem  21590  dvferm2lem  21592  radcnvle  22019  psercnlem1  22024  pserdvlem1  22026  pserdvlem2  22027  logtayl  22239
  Copyright terms: Public domain W3C validator