Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atpsubN Structured version   Unicode version

Theorem atpsubN 33716
Description: The set of all atoms is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
atpsub.a  |-  A  =  ( Atoms `  K )
atpsub.s  |-  S  =  ( PSubSp `  K )
Assertion
Ref Expression
atpsubN  |-  ( K  e.  V  ->  A  e.  S )

Proof of Theorem atpsubN
Dummy variables  q  p  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3478 . . 3  |-  A  C_  A
2 ax-1 6 . . . . 5  |-  ( r  e.  A  ->  (
r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  A ) )
32rgen 2893 . . . 4  |-  A. r  e.  A  ( r
( le `  K
) ( p (
join `  K )
q )  ->  r  e.  A )
43rgen2w 2896 . . 3  |-  A. p  e.  A  A. q  e.  A  A. r  e.  A  ( r
( le `  K
) ( p (
join `  K )
q )  ->  r  e.  A )
51, 4pm3.2i 455 . 2  |-  ( A 
C_  A  /\  A. p  e.  A  A. q  e.  A  A. r  e.  A  (
r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  A ) )
6 eqid 2452 . . 3  |-  ( le
`  K )  =  ( le `  K
)
7 eqid 2452 . . 3  |-  ( join `  K )  =  (
join `  K )
8 atpsub.a . . 3  |-  A  =  ( Atoms `  K )
9 atpsub.s . . 3  |-  S  =  ( PSubSp `  K )
106, 7, 8, 9ispsubsp 33708 . 2  |-  ( K  e.  V  ->  ( A  e.  S  <->  ( A  C_  A  /\  A. p  e.  A  A. q  e.  A  A. r  e.  A  ( r
( le `  K
) ( p (
join `  K )
q )  ->  r  e.  A ) ) ) )
115, 10mpbiri 233 1  |-  ( K  e.  V  ->  A  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2796    C_ wss 3431   class class class wbr 4395   ` cfv 5521  (class class class)co 6195   lecple 14359   joincjn 15228   Atomscatm 33227   PSubSpcpsubsp 33459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-rab 2805  df-v 3074  df-sbc 3289  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4195  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4739  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-iota 5484  df-fun 5523  df-fv 5529  df-ov 6198  df-psubsp 33466
This theorem is referenced by:  pclvalN  33853  pclclN  33854
  Copyright terms: Public domain W3C validator