Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atmod4i1 Structured version   Unicode version

Theorem atmod4i1 36003
Description: Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 10-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b  |-  B  =  ( Base `  K
)
atmod.l  |-  .<_  =  ( le `  K )
atmod.j  |-  .\/  =  ( join `  K )
atmod.m  |-  ./\  =  ( meet `  K )
atmod.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atmod4i1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  Y )  ->  ( ( X  ./\  Y )  .\/  P )  =  ( ( X  .\/  P ) 
./\  Y ) )

Proof of Theorem atmod4i1
StepHypRef Expression
1 hllat 35501 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
213ad2ant1 1015 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  Y )  ->  K  e.  Lat )
3 simp22 1028 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  Y )  ->  X  e.  B )
4 simp23 1029 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  Y )  ->  Y  e.  B )
5 atmod.b . . . . 5  |-  B  =  ( Base `  K
)
6 atmod.m . . . . 5  |-  ./\  =  ( meet `  K )
75, 6latmcl 15799 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
82, 3, 4, 7syl3anc 1226 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  Y )  ->  ( X  ./\ 
Y )  e.  B
)
9 simp21 1027 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  Y )  ->  P  e.  A )
10 atmod.a . . . . 5  |-  A  =  ( Atoms `  K )
115, 10atbase 35427 . . . 4  |-  ( P  e.  A  ->  P  e.  B )
129, 11syl 16 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  Y )  ->  P  e.  B )
13 atmod.j . . . 4  |-  .\/  =  ( join `  K )
145, 13latjcom 15806 . . 3  |-  ( ( K  e.  Lat  /\  ( X  ./\  Y )  e.  B  /\  P  e.  B )  ->  (
( X  ./\  Y
)  .\/  P )  =  ( P  .\/  ( X  ./\  Y ) ) )
152, 8, 12, 14syl3anc 1226 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  Y )  ->  ( ( X  ./\  Y )  .\/  P )  =  ( P 
.\/  ( X  ./\  Y ) ) )
16 atmod.l . . 3  |-  .<_  =  ( le `  K )
175, 16, 13, 6, 10atmod1i1 35994 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  Y )  ->  ( P  .\/  ( X  ./\  Y
) )  =  ( ( P  .\/  X
)  ./\  Y )
)
185, 13latjcom 15806 . . . 4  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  X  e.  B )  ->  ( P  .\/  X
)  =  ( X 
.\/  P ) )
192, 12, 3, 18syl3anc 1226 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  Y )  ->  ( P  .\/  X )  =  ( X  .\/  P ) )
2019oveq1d 6211 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  Y )  ->  ( ( P  .\/  X )  ./\  Y )  =  ( ( X  .\/  P ) 
./\  Y ) )
2115, 17, 203eqtrd 2427 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  Y )  ->  ( ( X  ./\  Y )  .\/  P )  =  ( ( X  .\/  P ) 
./\  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 971    = wceq 1399    e. wcel 1826   class class class wbr 4367   ` cfv 5496  (class class class)co 6196   Basecbs 14634   lecple 14709   joincjn 15690   meetcmee 15691   Latclat 15792   Atomscatm 35401   HLchlt 35488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-iun 4245  df-iin 4246  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-1st 6699  df-2nd 6700  df-preset 15674  df-poset 15692  df-plt 15705  df-lub 15721  df-glb 15722  df-join 15723  df-meet 15724  df-p0 15786  df-lat 15793  df-clat 15855  df-oposet 35314  df-ol 35316  df-oml 35317  df-covers 35404  df-ats 35405  df-atl 35436  df-cvlat 35460  df-hlat 35489  df-psubsp 35640  df-pmap 35641  df-padd 35933
This theorem is referenced by:  dalawlem3  36010  dalawlem7  36014  dalawlem11  36018  cdleme9  36391  cdleme20aN  36448  cdleme22cN  36481  cdleme22d  36482  cdlemh1  36954  dia2dimlem1  37204  dia2dimlem2  37205  dia2dimlem3  37206
  Copyright terms: Public domain W3C validator