Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atmod3i2 Structured version   Unicode version

Theorem atmod3i2 35986
Description: Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 10-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b  |-  B  =  ( Base `  K
)
atmod.l  |-  .<_  =  ( le `  K )
atmod.j  |-  .\/  =  ( join `  K )
atmod.m  |-  ./\  =  ( meet `  K )
atmod.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atmod3i2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  ( X  .\/  ( Y  ./\  P
) )  =  ( Y  ./\  ( X  .\/  P ) ) )

Proof of Theorem atmod3i2
StepHypRef Expression
1 hllat 35485 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
213ad2ant1 1015 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  K  e.  Lat )
3 simp23 1029 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  Y  e.  B )
4 simp22 1028 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  X  e.  B )
5 simp21 1027 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  P  e.  A )
6 atmod.b . . . . . 6  |-  B  =  ( Base `  K
)
7 atmod.a . . . . . 6  |-  A  =  ( Atoms `  K )
86, 7atbase 35411 . . . . 5  |-  ( P  e.  A  ->  P  e.  B )
95, 8syl 16 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  P  e.  B )
10 atmod.j . . . . 5  |-  .\/  =  ( join `  K )
116, 10latjcl 15880 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  P  e.  B )  ->  ( X  .\/  P
)  e.  B )
122, 4, 9, 11syl3anc 1226 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  ( X  .\/  P )  e.  B
)
13 atmod.m . . . 4  |-  ./\  =  ( meet `  K )
146, 13latmcom 15904 . . 3  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  ( X  .\/  P )  e.  B )  -> 
( Y  ./\  ( X  .\/  P ) )  =  ( ( X 
.\/  P )  ./\  Y ) )
152, 3, 12, 14syl3anc 1226 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  ( Y  ./\  ( X  .\/  P
) )  =  ( ( X  .\/  P
)  ./\  Y )
)
16 atmod.l . . 3  |-  .<_  =  ( le `  K )
176, 16, 10, 13, 7atmod1i2 35980 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  ( X  .\/  ( P  ./\  Y
) )  =  ( ( X  .\/  P
)  ./\  Y )
)
186, 13latmcom 15904 . . . 4  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Y  e.  B )  ->  ( P  ./\  Y
)  =  ( Y 
./\  P ) )
192, 9, 3, 18syl3anc 1226 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  ( P  ./\ 
Y )  =  ( Y  ./\  P )
)
2019oveq2d 6286 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  ( X  .\/  ( P  ./\  Y
) )  =  ( X  .\/  ( Y 
./\  P ) ) )
2115, 17, 203eqtr2rd 2502 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  X  .<_  Y )  ->  ( X  .\/  ( Y  ./\  P
) )  =  ( Y  ./\  ( X  .\/  P ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 971    = wceq 1398    e. wcel 1823   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   Basecbs 14716   lecple 14791   joincjn 15772   meetcmee 15773   Latclat 15874   Atomscatm 35385   HLchlt 35472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-1st 6773  df-2nd 6774  df-preset 15756  df-poset 15774  df-plt 15787  df-lub 15803  df-glb 15804  df-join 15805  df-meet 15806  df-p0 15868  df-lat 15875  df-clat 15937  df-oposet 35298  df-ol 35300  df-oml 35301  df-covers 35388  df-ats 35389  df-atl 35420  df-cvlat 35444  df-hlat 35473  df-psubsp 35624  df-pmap 35625  df-padd 35917
This theorem is referenced by:  dalawlem3  35994
  Copyright terms: Public domain W3C validator