Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atmod3i1 Structured version   Unicode version

Theorem atmod3i1 33866
Description: Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 4-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b  |-  B  =  ( Base `  K
)
atmod.l  |-  .<_  =  ( le `  K )
atmod.j  |-  .\/  =  ( join `  K )
atmod.m  |-  ./\  =  ( meet `  K )
atmod.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atmod3i1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  ( P  .\/  ( X  ./\  Y
) )  =  ( X  ./\  ( P  .\/  Y ) ) )

Proof of Theorem atmod3i1
StepHypRef Expression
1 simp1 988 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  K  e.  HL )
2 simp21 1021 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  P  e.  A )
3 simp23 1023 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  Y  e.  B )
4 simp22 1022 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  X  e.  B )
5 simp3 990 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  P  .<_  X )
6 atmod.b . . . 4  |-  B  =  ( Base `  K
)
7 atmod.l . . . 4  |-  .<_  =  ( le `  K )
8 atmod.j . . . 4  |-  .\/  =  ( join `  K )
9 atmod.m . . . 4  |-  ./\  =  ( meet `  K )
10 atmod.a . . . 4  |-  A  =  ( Atoms `  K )
116, 7, 8, 9, 10atmod1i1 33859 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Y  e.  B  /\  X  e.  B
)  /\  P  .<_  X )  ->  ( P  .\/  ( Y  ./\  X
) )  =  ( ( P  .\/  Y
)  ./\  X )
)
121, 2, 3, 4, 5, 11syl131anc 1232 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  ( P  .\/  ( Y  ./\  X
) )  =  ( ( P  .\/  Y
)  ./\  X )
)
13 hllat 33366 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
14133ad2ant1 1009 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  K  e.  Lat )
156, 9latmcom 15367 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  =  ( Y 
./\  X ) )
1614, 4, 3, 15syl3anc 1219 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  ( X  ./\ 
Y )  =  ( Y  ./\  X )
)
1716oveq2d 6219 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  ( P  .\/  ( X  ./\  Y
) )  =  ( P  .\/  ( Y 
./\  X ) ) )
186, 10atbase 33292 . . . . 5  |-  ( P  e.  A  ->  P  e.  B )
192, 18syl 16 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  P  e.  B )
206, 8latjcl 15343 . . . 4  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Y  e.  B )  ->  ( P  .\/  Y
)  e.  B )
2114, 19, 3, 20syl3anc 1219 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  ( P  .\/  Y )  e.  B
)
226, 9latmcom 15367 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( P  .\/  Y )  e.  B )  -> 
( X  ./\  ( P  .\/  Y ) )  =  ( ( P 
.\/  Y )  ./\  X ) )
2314, 4, 21, 22syl3anc 1219 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  ( X  ./\  ( P  .\/  Y
) )  =  ( ( P  .\/  Y
)  ./\  X )
)
2412, 17, 233eqtr4d 2505 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  ( P  .\/  ( X  ./\  Y
) )  =  ( X  ./\  ( P  .\/  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 965    = wceq 1370    e. wcel 1758   class class class wbr 4403   ` cfv 5529  (class class class)co 6203   Basecbs 14295   lecple 14367   joincjn 15236   meetcmee 15237   Latclat 15337   Atomscatm 33266   HLchlt 33353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-1st 6690  df-2nd 6691  df-poset 15238  df-plt 15250  df-lub 15266  df-glb 15267  df-join 15268  df-meet 15269  df-p0 15331  df-lat 15338  df-clat 15400  df-oposet 33179  df-ol 33181  df-oml 33182  df-covers 33269  df-ats 33270  df-atl 33301  df-cvlat 33325  df-hlat 33354  df-psubsp 33505  df-pmap 33506  df-padd 33798
This theorem is referenced by:  dalawlem2  33874  dalawlem3  33875  dalawlem6  33878  lhpmcvr3  34027  cdleme0cp  34216  cdleme0cq  34217  cdleme1  34229  cdleme4  34240  cdleme5  34242  cdleme8  34252  cdleme9  34255  cdleme10  34256  cdleme15b  34277  cdleme22e  34346  cdleme22eALTN  34347  cdleme23c  34353  cdleme35b  34452  cdleme35e  34455  cdleme42a  34473  trlcoabs2N  34724  cdlemi1  34820  cdlemk4  34836  dia2dimlem1  35067  dia2dimlem2  35068  cdlemn10  35209  dihglbcpreN  35303
  Copyright terms: Public domain W3C validator