Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atmod2i1 Structured version   Unicode version

Theorem atmod2i1 32859
Description: Version of modular law pmod2iN 32847 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b  |-  B  =  ( Base `  K
)
atmod.l  |-  .<_  =  ( le `  K )
atmod.j  |-  .\/  =  ( join `  K )
atmod.m  |-  ./\  =  ( meet `  K )
atmod.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atmod2i1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  ( ( X  ./\  Y )  .\/  P )  =  ( X 
./\  ( Y  .\/  P ) ) )

Proof of Theorem atmod2i1
StepHypRef Expression
1 hllat 32362 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
213ad2ant1 1018 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  K  e.  Lat )
3 simp22 1031 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  X  e.  B )
4 simp23 1032 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  Y  e.  B )
5 atmod.b . . . . 5  |-  B  =  ( Base `  K
)
6 atmod.m . . . . 5  |-  ./\  =  ( meet `  K )
75, 6latmcom 15921 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  =  ( Y 
./\  X ) )
82, 3, 4, 7syl3anc 1230 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  ( X  ./\ 
Y )  =  ( Y  ./\  X )
)
98oveq2d 6250 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  ( P  .\/  ( X  ./\  Y
) )  =  ( P  .\/  ( Y 
./\  X ) ) )
10 simp21 1030 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  P  e.  A )
11 atmod.a . . . . 5  |-  A  =  ( Atoms `  K )
125, 11atbase 32288 . . . 4  |-  ( P  e.  A  ->  P  e.  B )
1310, 12syl 17 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  P  e.  B )
145, 6latmcl 15898 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
152, 3, 4, 14syl3anc 1230 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  ( X  ./\ 
Y )  e.  B
)
16 atmod.j . . . 4  |-  .\/  =  ( join `  K )
175, 16latjcom 15905 . . 3  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  ( X  ./\  Y )  e.  B )  -> 
( P  .\/  ( X  ./\  Y ) )  =  ( ( X 
./\  Y )  .\/  P ) )
182, 13, 15, 17syl3anc 1230 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  ( P  .\/  ( X  ./\  Y
) )  =  ( ( X  ./\  Y
)  .\/  P )
)
195, 16latjcl 15897 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Y  e.  B )  ->  ( P  .\/  Y
)  e.  B )
202, 13, 4, 19syl3anc 1230 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  ( P  .\/  Y )  e.  B
)
215, 6latmcom 15921 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  .\/  Y )  e.  B  /\  X  e.  B )  ->  (
( P  .\/  Y
)  ./\  X )  =  ( X  ./\  ( P  .\/  Y ) ) )
222, 20, 3, 21syl3anc 1230 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  ( ( P  .\/  Y )  ./\  X )  =  ( X 
./\  ( P  .\/  Y ) ) )
23 simp1 997 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  K  e.  HL )
24 simp3 999 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  P  .<_  X )
25 atmod.l . . . . 5  |-  .<_  =  ( le `  K )
265, 25, 16, 6, 11atmod1i1 32855 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Y  e.  B  /\  X  e.  B
)  /\  P  .<_  X )  ->  ( P  .\/  ( Y  ./\  X
) )  =  ( ( P  .\/  Y
)  ./\  X )
)
2723, 10, 4, 3, 24, 26syl131anc 1243 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  ( P  .\/  ( Y  ./\  X
) )  =  ( ( P  .\/  Y
)  ./\  X )
)
285, 16latjcom 15905 . . . . 5  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  P  e.  B )  ->  ( Y  .\/  P
)  =  ( P 
.\/  Y ) )
292, 4, 13, 28syl3anc 1230 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  ( Y  .\/  P )  =  ( P  .\/  Y ) )
3029oveq2d 6250 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  ( X  ./\  ( Y  .\/  P
) )  =  ( X  ./\  ( P  .\/  Y ) ) )
3122, 27, 303eqtr4d 2453 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  ( P  .\/  ( Y  ./\  X
) )  =  ( X  ./\  ( Y  .\/  P ) ) )
329, 18, 313eqtr3d 2451 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  B  /\  Y  e.  B
)  /\  P  .<_  X )  ->  ( ( X  ./\  Y )  .\/  P )  =  ( X 
./\  ( Y  .\/  P ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 974    = wceq 1405    e. wcel 1842   class class class wbr 4394   ` cfv 5525  (class class class)co 6234   Basecbs 14733   lecple 14808   joincjn 15789   meetcmee 15790   Latclat 15891   Atomscatm 32262   HLchlt 32349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-iun 4272  df-iin 4273  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6196  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-1st 6738  df-2nd 6739  df-preset 15773  df-poset 15791  df-plt 15804  df-lub 15820  df-glb 15821  df-join 15822  df-meet 15823  df-p0 15885  df-lat 15892  df-clat 15954  df-oposet 32175  df-ol 32177  df-oml 32178  df-covers 32265  df-ats 32266  df-atl 32297  df-cvlat 32321  df-hlat 32350  df-psubsp 32501  df-pmap 32502  df-padd 32794
This theorem is referenced by:  lhpmod6i1  33037  trljat1  33165  trljat2  33166  cdlemc1  33190  cdlemc6  33195  cdleme16b  33278  cdleme20c  33311  cdleme20j  33318  cdleme22e  33344  cdleme22eALTN  33345  cdlemkid1  33922  dihmeetlem5  34309
  Copyright terms: Public domain W3C validator