Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atltcvr Structured version   Unicode version

Theorem atltcvr 32709
Description: An equivalence of less-than ordering and covers relation. (Contributed by NM, 7-Feb-2012.)
Hypotheses
Ref Expression
atltcvr.s  |-  .<  =  ( lt `  K )
atltcvr.j  |-  .\/  =  ( join `  K )
atltcvr.a  |-  A  =  ( Atoms `  K )
atltcvr.c  |-  C  =  (  <o  `  K )
Assertion
Ref Expression
atltcvr  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( P  .<  ( Q  .\/  R )  <->  P C ( Q 
.\/  R ) ) )

Proof of Theorem atltcvr
StepHypRef Expression
1 oveq1 6303 . . . . . 6  |-  ( Q  =  R  ->  ( Q  .\/  R )  =  ( R  .\/  R
) )
2 simpr3 1013 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  R  e.  A )
3 atltcvr.j . . . . . . . 8  |-  .\/  =  ( join `  K )
4 atltcvr.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
53, 4hlatjidm 32643 . . . . . . 7  |-  ( ( K  e.  HL  /\  R  e.  A )  ->  ( R  .\/  R
)  =  R )
62, 5syldan 472 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( R  .\/  R )  =  R )
71, 6sylan9eqr 2483 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  Q  =  R )  ->  ( Q  .\/  R )  =  R )
87breq2d 4429 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  Q  =  R )  ->  ( P  .<  ( Q  .\/  R )  <->  P  .<  R ) )
9 hlatl 32635 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  AtLat )
109adantr 466 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  K  e.  AtLat )
11 simpr1 1011 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  P  e.  A )
12 atltcvr.s . . . . . . . 8  |-  .<  =  ( lt `  K )
1312, 4atnlt 32588 . . . . . . 7  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  R  e.  A )  ->  -.  P  .<  R )
1410, 11, 2, 13syl3anc 1264 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  -.  P  .<  R )
1514pm2.21d 109 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( P  .<  R  ->  P C ( Q  .\/  R ) ) )
1615adantr 466 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  Q  =  R )  ->  ( P  .<  R  ->  P C ( Q  .\/  R ) ) )
178, 16sylbid 218 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  Q  =  R )  ->  ( P  .<  ( Q  .\/  R )  ->  P C
( Q  .\/  R
) ) )
18 simpl 458 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  K  e.  HL )
19 hllat 32638 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
2019adantr 466 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  K  e.  Lat )
21 simpr2 1012 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  Q  e.  A )
22 eqid 2420 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
2322, 4atbase 32564 . . . . . . . 8  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
2421, 23syl 17 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  Q  e.  ( Base `  K
) )
2522, 4atbase 32564 . . . . . . . 8  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
262, 25syl 17 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  R  e.  ( Base `  K
) )
2722, 3latjcl 16241 . . . . . . 7  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) )  ->  ( Q  .\/  R )  e.  ( Base `  K
) )
2820, 24, 26, 27syl3anc 1264 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( Q  .\/  R )  e.  ( Base `  K
) )
29 eqid 2420 . . . . . . 7  |-  ( le
`  K )  =  ( le `  K
)
3029, 12pltle 16151 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( Q  .\/  R )  e.  ( Base `  K
) )  ->  ( P  .<  ( Q  .\/  R )  ->  P ( le `  K ) ( Q  .\/  R ) ) )
3118, 11, 28, 30syl3anc 1264 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( P  .<  ( Q  .\/  R )  ->  P ( le `  K ) ( Q  .\/  R ) ) )
3231adantr 466 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  Q  =/=  R )  ->  ( P  .<  ( Q  .\/  R )  ->  P ( le `  K ) ( Q  .\/  R ) ) )
33 simpll 758 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Q  =/=  R  /\  P
( le `  K
) ( Q  .\/  R ) ) )  ->  K  e.  HL )
34 simplr 760 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Q  =/=  R  /\  P
( le `  K
) ( Q  .\/  R ) ) )  -> 
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )
35 simpr 462 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Q  =/=  R  /\  P
( le `  K
) ( Q  .\/  R ) ) )  -> 
( Q  =/=  R  /\  P ( le `  K ) ( Q 
.\/  R ) ) )
3633, 34, 353jca 1185 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Q  =/=  R  /\  P
( le `  K
) ( Q  .\/  R ) ) )  -> 
( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( Q  =/=  R  /\  P ( le `  K ) ( Q  .\/  R
) ) ) )
3736anassrs 652 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  /\  Q  =/=  R )  /\  P ( le `  K ) ( Q 
.\/  R ) )  ->  ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( Q  =/=  R  /\  P
( le `  K
) ( Q  .\/  R ) ) ) )
38 atltcvr.c . . . . . . 7  |-  C  =  (  <o  `  K )
3929, 3, 38, 4atcvrj2 32707 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( Q  =/=  R  /\  P ( le `  K ) ( Q  .\/  R
) ) )  ->  P C ( Q  .\/  R ) )
4037, 39syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  /\  Q  =/=  R )  /\  P ( le `  K ) ( Q 
.\/  R ) )  ->  P C ( Q  .\/  R ) )
4140ex 435 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  Q  =/=  R )  ->  ( P ( le `  K ) ( Q 
.\/  R )  ->  P C ( Q  .\/  R ) ) )
4232, 41syld 45 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  Q  =/=  R )  ->  ( P  .<  ( Q  .\/  R )  ->  P C
( Q  .\/  R
) ) )
4317, 42pm2.61dane 2740 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( P  .<  ( Q  .\/  R )  ->  P C
( Q  .\/  R
) ) )
4422, 4atbase 32564 . . . 4  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
4511, 44syl 17 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  P  e.  ( Base `  K
) )
4622, 12, 38cvrlt 32545 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  ( Base `  K )  /\  ( Q  .\/  R )  e.  ( Base `  K
) )  /\  P C ( Q  .\/  R ) )  ->  P  .<  ( Q  .\/  R
) )
4746ex 435 . . 3  |-  ( ( K  e.  HL  /\  P  e.  ( Base `  K )  /\  ( Q  .\/  R )  e.  ( Base `  K
) )  ->  ( P C ( Q  .\/  R )  ->  P  .<  ( Q  .\/  R ) ) )
4818, 45, 28, 47syl3anc 1264 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( P C ( Q  .\/  R )  ->  P  .<  ( Q  .\/  R ) ) )
4943, 48impbid 193 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( P  .<  ( Q  .\/  R )  <->  P C ( Q 
.\/  R ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1867    =/= wne 2616   class class class wbr 4417   ` cfv 5592  (class class class)co 6296   Basecbs 15073   lecple 15149   ltcplt 16130   joincjn 16133   Latclat 16235    <o ccvr 32537   Atomscatm 32538   AtLatcal 32539   HLchlt 32625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-reu 2780  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-riota 6258  df-ov 6299  df-oprab 6300  df-preset 16117  df-poset 16135  df-plt 16148  df-lub 16164  df-glb 16165  df-join 16166  df-meet 16167  df-p0 16229  df-lat 16236  df-clat 16298  df-oposet 32451  df-ol 32453  df-oml 32454  df-covers 32541  df-ats 32542  df-atl 32573  df-cvlat 32597  df-hlat 32626
This theorem is referenced by:  atlt  32711  2atlt  32713  atexchltN  32715
  Copyright terms: Public domain W3C validator