Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atltcvr Structured version   Unicode version

Theorem atltcvr 34249
Description: An equivalence of less-than ordering and covers relation. (Contributed by NM, 7-Feb-2012.)
Hypotheses
Ref Expression
atltcvr.s  |-  .<  =  ( lt `  K )
atltcvr.j  |-  .\/  =  ( join `  K )
atltcvr.a  |-  A  =  ( Atoms `  K )
atltcvr.c  |-  C  =  (  <o  `  K )
Assertion
Ref Expression
atltcvr  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( P  .<  ( Q  .\/  R )  <->  P C ( Q 
.\/  R ) ) )

Proof of Theorem atltcvr
StepHypRef Expression
1 oveq1 6291 . . . . . 6  |-  ( Q  =  R  ->  ( Q  .\/  R )  =  ( R  .\/  R
) )
2 simpr3 1004 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  R  e.  A )
3 atltcvr.j . . . . . . . 8  |-  .\/  =  ( join `  K )
4 atltcvr.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
53, 4hlatjidm 34183 . . . . . . 7  |-  ( ( K  e.  HL  /\  R  e.  A )  ->  ( R  .\/  R
)  =  R )
62, 5syldan 470 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( R  .\/  R )  =  R )
71, 6sylan9eqr 2530 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  Q  =  R )  ->  ( Q  .\/  R )  =  R )
87breq2d 4459 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  Q  =  R )  ->  ( P  .<  ( Q  .\/  R )  <->  P  .<  R ) )
9 hlatl 34175 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  AtLat )
109adantr 465 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  K  e.  AtLat )
11 simpr1 1002 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  P  e.  A )
12 atltcvr.s . . . . . . . 8  |-  .<  =  ( lt `  K )
1312, 4atnlt 34128 . . . . . . 7  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  R  e.  A )  ->  -.  P  .<  R )
1410, 11, 2, 13syl3anc 1228 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  -.  P  .<  R )
1514pm2.21d 106 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( P  .<  R  ->  P C ( Q  .\/  R ) ) )
1615adantr 465 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  Q  =  R )  ->  ( P  .<  R  ->  P C ( Q  .\/  R ) ) )
178, 16sylbid 215 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  Q  =  R )  ->  ( P  .<  ( Q  .\/  R )  ->  P C
( Q  .\/  R
) ) )
18 simpl 457 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  K  e.  HL )
19 hllat 34178 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
2019adantr 465 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  K  e.  Lat )
21 simpr2 1003 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  Q  e.  A )
22 eqid 2467 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
2322, 4atbase 34104 . . . . . . . 8  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
2421, 23syl 16 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  Q  e.  ( Base `  K
) )
2522, 4atbase 34104 . . . . . . . 8  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
262, 25syl 16 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  R  e.  ( Base `  K
) )
2722, 3latjcl 15538 . . . . . . 7  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) )  ->  ( Q  .\/  R )  e.  ( Base `  K
) )
2820, 24, 26, 27syl3anc 1228 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( Q  .\/  R )  e.  ( Base `  K
) )
29 eqid 2467 . . . . . . 7  |-  ( le
`  K )  =  ( le `  K
)
3029, 12pltle 15448 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( Q  .\/  R )  e.  ( Base `  K
) )  ->  ( P  .<  ( Q  .\/  R )  ->  P ( le `  K ) ( Q  .\/  R ) ) )
3118, 11, 28, 30syl3anc 1228 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( P  .<  ( Q  .\/  R )  ->  P ( le `  K ) ( Q  .\/  R ) ) )
3231adantr 465 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  Q  =/=  R )  ->  ( P  .<  ( Q  .\/  R )  ->  P ( le `  K ) ( Q  .\/  R ) ) )
33 simpll 753 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Q  =/=  R  /\  P
( le `  K
) ( Q  .\/  R ) ) )  ->  K  e.  HL )
34 simplr 754 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Q  =/=  R  /\  P
( le `  K
) ( Q  .\/  R ) ) )  -> 
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )
35 simpr 461 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Q  =/=  R  /\  P
( le `  K
) ( Q  .\/  R ) ) )  -> 
( Q  =/=  R  /\  P ( le `  K ) ( Q 
.\/  R ) ) )
3633, 34, 353jca 1176 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Q  =/=  R  /\  P
( le `  K
) ( Q  .\/  R ) ) )  -> 
( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( Q  =/=  R  /\  P ( le `  K ) ( Q  .\/  R
) ) ) )
3736anassrs 648 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  /\  Q  =/=  R )  /\  P ( le `  K ) ( Q 
.\/  R ) )  ->  ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( Q  =/=  R  /\  P
( le `  K
) ( Q  .\/  R ) ) ) )
38 atltcvr.c . . . . . . 7  |-  C  =  (  <o  `  K )
3929, 3, 38, 4atcvrj2 34247 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( Q  =/=  R  /\  P ( le `  K ) ( Q  .\/  R
) ) )  ->  P C ( Q  .\/  R ) )
4037, 39syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  /\  Q  =/=  R )  /\  P ( le `  K ) ( Q 
.\/  R ) )  ->  P C ( Q  .\/  R ) )
4140ex 434 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  Q  =/=  R )  ->  ( P ( le `  K ) ( Q 
.\/  R )  ->  P C ( Q  .\/  R ) ) )
4232, 41syld 44 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  Q  =/=  R )  ->  ( P  .<  ( Q  .\/  R )  ->  P C
( Q  .\/  R
) ) )
4317, 42pm2.61dane 2785 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( P  .<  ( Q  .\/  R )  ->  P C
( Q  .\/  R
) ) )
4422, 4atbase 34104 . . . 4  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
4511, 44syl 16 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  P  e.  ( Base `  K
) )
4622, 12, 38cvrlt 34085 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  ( Base `  K )  /\  ( Q  .\/  R )  e.  ( Base `  K
) )  /\  P C ( Q  .\/  R ) )  ->  P  .<  ( Q  .\/  R
) )
4746ex 434 . . 3  |-  ( ( K  e.  HL  /\  P  e.  ( Base `  K )  /\  ( Q  .\/  R )  e.  ( Base `  K
) )  ->  ( P C ( Q  .\/  R )  ->  P  .<  ( Q  .\/  R ) ) )
4818, 45, 28, 47syl3anc 1228 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( P C ( Q  .\/  R )  ->  P  .<  ( Q  .\/  R ) ) )
4943, 48impbid 191 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( P  .<  ( Q  .\/  R )  <->  P C ( Q 
.\/  R ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4447   ` cfv 5588  (class class class)co 6284   Basecbs 14490   lecple 14562   ltcplt 15428   joincjn 15431   Latclat 15532    <o ccvr 34077   Atomscatm 34078   AtLatcal 34079   HLchlt 34165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-poset 15433  df-plt 15445  df-lub 15461  df-glb 15462  df-join 15463  df-meet 15464  df-p0 15526  df-lat 15533  df-clat 15595  df-oposet 33991  df-ol 33993  df-oml 33994  df-covers 34081  df-ats 34082  df-atl 34113  df-cvlat 34137  df-hlat 34166
This theorem is referenced by:  atlt  34251  2atlt  34253  atexchltN  34255
  Copyright terms: Public domain W3C validator