Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlpos Unicode version

Theorem atlpos 29784
Description: An atomic lattice is a poset. (Contributed by NM, 5-Nov-2012.)
Assertion
Ref Expression
atlpos  |-  ( K  e.  AtLat  ->  K  e.  Poset
)

Proof of Theorem atlpos
StepHypRef Expression
1 atllat 29783 . 2  |-  ( K  e.  AtLat  ->  K  e.  Lat )
2 latpos 14433 . 2  |-  ( K  e.  Lat  ->  K  e.  Poset )
31, 2syl 16 1  |-  ( K  e.  AtLat  ->  K  e.  Poset
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1721   Posetcpo 14352   Latclat 14429   AtLatcal 29747
This theorem is referenced by:  atl0le  29787  atlle0  29788  atnle0  29792  atlen0  29793  atcmp  29794  atcvreq0  29797  atlatmstc  29802  atlatle  29803  atlrelat1  29804
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-iota 5377  df-fv 5421  df-ov 6043  df-lat 14430  df-atl 29781
  Copyright terms: Public domain W3C validator