Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlelt Structured version   Unicode version

Theorem atlelt 32966
Description: Transfer less-than relation from one atom to another. (Contributed by NM, 7-May-2012.)
Hypotheses
Ref Expression
atlelt.b  |-  B  =  ( Base `  K
)
atlelt.l  |-  .<_  =  ( le `  K )
atlelt.s  |-  .<  =  ( lt `  K )
atlelt.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atlelt  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  Q  .<  X ) )  ->  P  .<  X )

Proof of Theorem atlelt
StepHypRef Expression
1 simp3r 1035 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  Q  .<  X ) )  ->  Q  .<  X )
2 breq1 4424 . . 3  |-  ( P  =  Q  ->  ( P  .<  X  <->  Q  .<  X ) )
31, 2syl5ibrcom 226 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  Q  .<  X ) )  ->  ( P  =  Q  ->  P 
.<  X ) )
4 simp1 1006 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  Q  .<  X ) )  ->  K  e.  HL )
5 simp21 1039 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  Q  .<  X ) )  ->  P  e.  A )
6 simp22 1040 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  Q  .<  X ) )  ->  Q  e.  A )
7 atlelt.s . . . . 5  |-  .<  =  ( lt `  K )
8 eqid 2423 . . . . 5  |-  ( join `  K )  =  (
join `  K )
9 atlelt.a . . . . 5  |-  A  =  ( Atoms `  K )
107, 8, 9atlt 32965 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .<  ( P ( join `  K
) Q )  <->  P  =/=  Q ) )
114, 5, 6, 10syl3anc 1265 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  Q  .<  X ) )  ->  ( P  .<  ( P (
join `  K ) Q )  <->  P  =/=  Q ) )
12 simp3l 1034 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  Q  .<  X ) )  ->  P  .<_  X )
13 simp23 1041 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  Q  .<  X ) )  ->  X  e.  B )
144, 6, 133jca 1186 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  Q  .<  X ) )  ->  ( K  e.  HL  /\  Q  e.  A  /\  X  e.  B ) )
15 atlelt.l . . . . . . 7  |-  .<_  =  ( le `  K )
1615, 7pltle 16200 . . . . . 6  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  X  e.  B )  ->  ( Q  .<  X  ->  Q  .<_  X ) )
1714, 1, 16sylc 63 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  Q  .<  X ) )  ->  Q  .<_  X )
18 hllat 32892 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
19183ad2ant1 1027 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  Q  .<  X ) )  ->  K  e.  Lat )
20 atlelt.b . . . . . . . 8  |-  B  =  ( Base `  K
)
2120, 9atbase 32818 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  B )
225, 21syl 17 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  Q  .<  X ) )  ->  P  e.  B )
2320, 9atbase 32818 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  B )
246, 23syl 17 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  Q  .<  X ) )  ->  Q  e.  B )
2520, 15, 8latjle12 16301 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  e.  B  /\  Q  e.  B  /\  X  e.  B
) )  ->  (
( P  .<_  X  /\  Q  .<_  X )  <->  ( P
( join `  K ) Q )  .<_  X ) )
2619, 22, 24, 13, 25syl13anc 1267 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  Q  .<  X ) )  ->  (
( P  .<_  X  /\  Q  .<_  X )  <->  ( P
( join `  K ) Q )  .<_  X ) )
2712, 17, 26mpbi2and 930 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  Q  .<  X ) )  ->  ( P ( join `  K
) Q )  .<_  X )
28 hlpos 32894 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Poset )
29283ad2ant1 1027 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  Q  .<  X ) )  ->  K  e.  Poset )
3020, 8latjcl 16290 . . . . . 6  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P ( join `  K ) Q )  e.  B )
3119, 22, 24, 30syl3anc 1265 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  Q  .<  X ) )  ->  ( P ( join `  K
) Q )  e.  B )
3220, 15, 7pltletr 16210 . . . . 5  |-  ( ( K  e.  Poset  /\  ( P  e.  B  /\  ( P ( join `  K
) Q )  e.  B  /\  X  e.  B ) )  -> 
( ( P  .<  ( P ( join `  K
) Q )  /\  ( P ( join `  K
) Q )  .<_  X )  ->  P  .<  X ) )
3329, 22, 31, 13, 32syl13anc 1267 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  Q  .<  X ) )  ->  (
( P  .<  ( P ( join `  K
) Q )  /\  ( P ( join `  K
) Q )  .<_  X )  ->  P  .<  X ) )
3427, 33mpan2d 679 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  Q  .<  X ) )  ->  ( P  .<  ( P (
join `  K ) Q )  ->  P  .<  X ) )
3511, 34sylbird 239 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  Q  .<  X ) )  ->  ( P  =/=  Q  ->  P  .<  X ) )
363, 35pm2.61dne 2742 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  Q  .<  X ) )  ->  P  .<  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1869    =/= wne 2619   class class class wbr 4421   ` cfv 5599  (class class class)co 6303   Basecbs 15114   lecple 15190   Posetcpo 16178   ltcplt 16179   joincjn 16182   Latclat 16284   Atomscatm 32792   HLchlt 32879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-op 4004  df-uni 4218  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-id 4766  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-riota 6265  df-ov 6306  df-oprab 6307  df-preset 16166  df-poset 16184  df-plt 16197  df-lub 16213  df-glb 16214  df-join 16215  df-meet 16216  df-p0 16278  df-lat 16285  df-clat 16347  df-oposet 32705  df-ol 32707  df-oml 32708  df-covers 32795  df-ats 32796  df-atl 32827  df-cvlat 32851  df-hlat 32880
This theorem is referenced by:  1cvratlt  33002
  Copyright terms: Public domain W3C validator