Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrlln Structured version   Unicode version

Theorem atcvrlln 33057
Description: An element covering an atom is a lattice line and vice-versa. (Contributed by NM, 18-Jun-2012.)
Hypotheses
Ref Expression
atcvrlln.b  |-  B  =  ( Base `  K
)
atcvrlln.c  |-  C  =  (  <o  `  K )
atcvrlln.a  |-  A  =  ( Atoms `  K )
atcvrlln.n  |-  N  =  ( LLines `  K )
Assertion
Ref Expression
atcvrlln  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( X  e.  A  <->  Y  e.  N
) )

Proof of Theorem atcvrlln
Dummy variables  q  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 1027 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  A )  ->  K  e.  HL )
2 simpll3 1029 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  A )  ->  Y  e.  B )
3 simpr 461 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  A )  ->  X  e.  A )
4 simplr 754 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  A )  ->  X C Y )
5 atcvrlln.b . . . 4  |-  B  =  ( Base `  K
)
6 atcvrlln.c . . . 4  |-  C  =  (  <o  `  K )
7 atcvrlln.a . . . 4  |-  A  =  ( Atoms `  K )
8 atcvrlln.n . . . 4  |-  N  =  ( LLines `  K )
95, 6, 7, 8llni 33045 . . 3  |-  ( ( ( K  e.  HL  /\  Y  e.  B  /\  X  e.  A )  /\  X C Y )  ->  Y  e.  N
)
101, 2, 3, 4, 9syl31anc 1221 . 2  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  A )  ->  Y  e.  N )
11 simpr 461 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  N )  ->  Y  e.  N )
12 simpll1 1027 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  N )  ->  K  e.  HL )
13 simpll3 1029 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  N )  ->  Y  e.  B )
14 eqid 2438 . . . . . 6  |-  ( join `  K )  =  (
join `  K )
155, 14, 7, 8islln3 33047 . . . . 5  |-  ( ( K  e.  HL  /\  Y  e.  B )  ->  ( Y  e.  N  <->  E. p  e.  A  E. q  e.  A  (
p  =/=  q  /\  Y  =  ( p
( join `  K )
q ) ) ) )
1612, 13, 15syl2anc 661 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  N )  ->  ( Y  e.  N  <->  E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  Y  =  ( p ( join `  K ) q ) ) ) )
1711, 16mpbid 210 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  N )  ->  E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  Y  =  ( p ( join `  K ) q ) ) )
18 simp1l1 1081 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  K  e.  HL )
19 simp1l2 1082 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  X  e.  B )
20 simp2l 1014 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  p  e.  A )
21 simp2r 1015 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  q  e.  A )
22 simp3l 1016 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  p  =/=  q )
23 simp1r 1013 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  X C Y )
24 simp3r 1017 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  Y  =  ( p ( join `  K ) q ) )
2523, 24breqtrd 4311 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  X C
( p ( join `  K ) q ) )
265, 14, 6, 7cvrat2 32966 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  p  e.  A  /\  q  e.  A
)  /\  ( p  =/=  q  /\  X C ( p ( join `  K ) q ) ) )  ->  X  e.  A )
2718, 19, 20, 21, 22, 25, 26syl132anc 1236 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  X  e.  A )
28273exp 1186 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( ( p  e.  A  /\  q  e.  A )  ->  (
( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) )  ->  X  e.  A
) ) )
2928rexlimdvv 2842 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  Y  =  ( p ( join `  K ) q ) )  ->  X  e.  A ) )
3029adantr 465 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  N )  ->  ( E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) )  ->  X  e.  A
) )
3117, 30mpd 15 . 2  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  N )  ->  X  e.  A )
3210, 31impbida 828 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( X  e.  A  <->  Y  e.  N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601   E.wrex 2711   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   Basecbs 14166   joincjn 15106    <o ccvr 32800   Atomscatm 32801   HLchlt 32888   LLinesclln 33028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-poset 15108  df-plt 15120  df-lub 15136  df-glb 15137  df-join 15138  df-meet 15139  df-p0 15201  df-lat 15208  df-clat 15270  df-oposet 32714  df-ol 32716  df-oml 32717  df-covers 32804  df-ats 32805  df-atl 32836  df-cvlat 32860  df-hlat 32889  df-llines 33035
This theorem is referenced by:  llncvrlpln  33095  2llnmj  33097  2llnm2N  33105
  Copyright terms: Public domain W3C validator