Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrlln Unicode version

Theorem atcvrlln 30002
Description: An element covering an atom is a lattice line and vice-versa. (Contributed by NM, 18-Jun-2012.)
Hypotheses
Ref Expression
atcvrlln.b  |-  B  =  ( Base `  K
)
atcvrlln.c  |-  C  =  (  <o  `  K )
atcvrlln.a  |-  A  =  ( Atoms `  K )
atcvrlln.n  |-  N  =  ( LLines `  K )
Assertion
Ref Expression
atcvrlln  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( X  e.  A  <->  Y  e.  N
) )

Proof of Theorem atcvrlln
Dummy variables  q  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 996 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  A )  ->  K  e.  HL )
2 simpll3 998 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  A )  ->  Y  e.  B )
3 simpr 448 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  A )  ->  X  e.  A )
4 simplr 732 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  A )  ->  X C Y )
5 atcvrlln.b . . . 4  |-  B  =  ( Base `  K
)
6 atcvrlln.c . . . 4  |-  C  =  (  <o  `  K )
7 atcvrlln.a . . . 4  |-  A  =  ( Atoms `  K )
8 atcvrlln.n . . . 4  |-  N  =  ( LLines `  K )
95, 6, 7, 8llni 29990 . . 3  |-  ( ( ( K  e.  HL  /\  Y  e.  B  /\  X  e.  A )  /\  X C Y )  ->  Y  e.  N
)
101, 2, 3, 4, 9syl31anc 1187 . 2  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  X  e.  A )  ->  Y  e.  N )
11 simpr 448 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  N )  ->  Y  e.  N )
12 simpll1 996 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  N )  ->  K  e.  HL )
13 simpll3 998 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  N )  ->  Y  e.  B )
14 eqid 2404 . . . . . 6  |-  ( join `  K )  =  (
join `  K )
155, 14, 7, 8islln3 29992 . . . . 5  |-  ( ( K  e.  HL  /\  Y  e.  B )  ->  ( Y  e.  N  <->  E. p  e.  A  E. q  e.  A  (
p  =/=  q  /\  Y  =  ( p
( join `  K )
q ) ) ) )
1612, 13, 15syl2anc 643 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  N )  ->  ( Y  e.  N  <->  E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  Y  =  ( p ( join `  K ) q ) ) ) )
1711, 16mpbid 202 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  N )  ->  E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  Y  =  ( p ( join `  K ) q ) ) )
18 simp1l1 1050 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  K  e.  HL )
19 simp1l2 1051 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  X  e.  B )
20 simp2l 983 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  p  e.  A )
21 simp2r 984 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  q  e.  A )
22 simp3l 985 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  p  =/=  q )
23 simp1r 982 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  X C Y )
24 simp3r 986 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  Y  =  ( p ( join `  K ) q ) )
2523, 24breqtrd 4196 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  X C
( p ( join `  K ) q ) )
265, 14, 6, 7cvrat2 29911 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  p  e.  A  /\  q  e.  A
)  /\  ( p  =/=  q  /\  X C ( p ( join `  K ) q ) ) )  ->  X  e.  A )
2718, 19, 20, 21, 22, 25, 26syl132anc 1202 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  (
p  e.  A  /\  q  e.  A )  /\  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) ) )  ->  X  e.  A )
28273exp 1152 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( ( p  e.  A  /\  q  e.  A )  ->  (
( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) )  ->  X  e.  A
) ) )
2928rexlimdvv 2796 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  Y  =  ( p ( join `  K ) q ) )  ->  X  e.  A ) )
3029adantr 452 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  N )  ->  ( E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  Y  =  (
p ( join `  K
) q ) )  ->  X  e.  A
) )
3117, 30mpd 15 . 2  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  Y  e.  N )  ->  X  e.  A )
3210, 31impbida 806 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( X  e.  A  <->  Y  e.  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   E.wrex 2667   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   Basecbs 13424   joincjn 14356    <o ccvr 29745   Atomscatm 29746   HLchlt 29833   LLinesclln 29973
This theorem is referenced by:  llncvrlpln  30040  2llnmj  30042  2llnm2N  30050
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980
  Copyright terms: Public domain W3C validator