Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvr1 Structured version   Unicode version

Theorem atcvr1 32691
Description: An atom is covered by its join with a different atom. (Contributed by NM, 7-Feb-2012.)
Hypotheses
Ref Expression
atcvr1.j  |-  .\/  =  ( join `  K )
atcvr1.c  |-  C  =  (  <o  `  K )
atcvr1.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atcvr1  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  <->  P C ( P  .\/  Q ) ) )

Proof of Theorem atcvr1
StepHypRef Expression
1 hlomcmcv 32631 . 2  |-  ( K  e.  HL  ->  ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
) )
2 atcvr1.j . . 3  |-  .\/  =  ( join `  K )
3 atcvr1.c . . 3  |-  C  =  (  <o  `  K )
4 atcvr1.a . . 3  |-  A  =  ( Atoms `  K )
52, 3, 4cvlatcvr1 32616 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  <->  P C
( P  .\/  Q
) ) )
61, 5syl3an1 1297 1  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  <->  P C ( P  .\/  Q ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ w3a 982    = wceq 1437    e. wcel 1870    =/= wne 2625   class class class wbr 4426   ` cfv 5601  (class class class)co 6305   joincjn 16140   CLatccla 16304   OMLcoml 32450    <o ccvr 32537   Atomscatm 32538   CvLatclc 32540   HLchlt 32625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-preset 16124  df-poset 16142  df-plt 16155  df-lub 16171  df-glb 16172  df-join 16173  df-meet 16174  df-p0 16236  df-lat 16243  df-clat 16305  df-oposet 32451  df-ol 32453  df-oml 32454  df-covers 32541  df-ats 32542  df-atl 32573  df-cvlat 32597  df-hlat 32626
This theorem is referenced by:  atcvr0eq  32700  lnnat  32701  atlt  32711  2atlt  32713  3dim0  32731  cdleme3b  33504  cdleme3c  33505  cdleme7e  33522
  Copyright terms: Public domain W3C validator