Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvr1 Structured version   Unicode version

Theorem atcvr1 33066
Description: An atom is covered by its join with a different atom. (Contributed by NM, 7-Feb-2012.)
Hypotheses
Ref Expression
atcvr1.j  |-  .\/  =  ( join `  K )
atcvr1.c  |-  C  =  (  <o  `  K )
atcvr1.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atcvr1  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  <->  P C ( P  .\/  Q ) ) )

Proof of Theorem atcvr1
StepHypRef Expression
1 hlomcmcv 33006 . 2  |-  ( K  e.  HL  ->  ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
) )
2 atcvr1.j . . 3  |-  .\/  =  ( join `  K )
3 atcvr1.c . . 3  |-  C  =  (  <o  `  K )
4 atcvr1.a . . 3  |-  A  =  ( Atoms `  K )
52, 3, 4cvlatcvr1 32991 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  <->  P C
( P  .\/  Q
) ) )
61, 5syl3an1 1251 1  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  <->  P C ( P  .\/  Q ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2611   class class class wbr 4297   ` cfv 5423  (class class class)co 6096   joincjn 15119   CLatccla 15282   OMLcoml 32825    <o ccvr 32912   Atomscatm 32913   CvLatclc 32915   HLchlt 33000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-poset 15121  df-plt 15133  df-lub 15149  df-glb 15150  df-join 15151  df-meet 15152  df-p0 15214  df-lat 15221  df-clat 15283  df-oposet 32826  df-ol 32828  df-oml 32829  df-covers 32916  df-ats 32917  df-atl 32948  df-cvlat 32972  df-hlat 33001
This theorem is referenced by:  atcvr0eq  33075  lnnat  33076  atlt  33086  2atlt  33088  3dim0  33106  cdleme3b  33878  cdleme3c  33879  cdleme7e  33896
  Copyright terms: Public domain W3C validator