Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvr0eq Structured version   Unicode version

Theorem atcvr0eq 35251
Description: The covers relation is not transitive. (atcv0eq 27424 analog.) (Contributed by NM, 29-Nov-2011.)
Hypotheses
Ref Expression
atcvr0eq.j  |-  .\/  =  ( join `  K )
atcvr0eq.z  |-  .0.  =  ( 0. `  K )
atcvr0eq.c  |-  C  =  (  <o  `  K )
atcvr0eq.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atcvr0eq  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  (  .0.  C ( P  .\/  Q )  <-> 
P  =  Q ) )

Proof of Theorem atcvr0eq
StepHypRef Expression
1 atcvr0eq.j . . . . . 6  |-  .\/  =  ( join `  K )
2 atcvr0eq.c . . . . . 6  |-  C  =  (  <o  `  K )
3 atcvr0eq.a . . . . . 6  |-  A  =  ( Atoms `  K )
41, 2, 3atcvr1 35242 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  <->  P C ( P  .\/  Q ) ) )
5 atcvr0eq.z . . . . . . . 8  |-  .0.  =  ( 0. `  K )
65, 2, 3atcvr0 35114 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  .0.  C P )
763adant3 1016 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  .0.  C P )
87biantrurd 508 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P C ( P  .\/  Q )  <-> 
(  .0.  C P  /\  P C ( P  .\/  Q ) ) ) )
94, 8bitrd 253 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  <->  (  .0.  C P  /\  P C ( P  .\/  Q ) ) ) )
10 simp1 996 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  K  e.  HL )
11 hlop 35188 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OP )
12113ad2ant1 1017 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  K  e.  OP )
13 eqid 2457 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
1413, 5op0cl 35010 . . . . . 6  |-  ( K  e.  OP  ->  .0.  e.  ( Base `  K
) )
1512, 14syl 16 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  .0.  e.  ( Base `  K ) )
1613, 3atbase 35115 . . . . . 6  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
17163ad2ant2 1018 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  P  e.  ( Base `  K ) )
1813, 1, 3hlatjcl 35192 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
1913, 2cvrntr 35250 . . . . 5  |-  ( ( K  e.  HL  /\  (  .0.  e.  ( Base `  K )  /\  P  e.  ( Base `  K
)  /\  ( P  .\/  Q )  e.  (
Base `  K )
) )  ->  (
(  .0.  C P  /\  P C ( P  .\/  Q ) )  ->  -.  .0.  C ( P  .\/  Q ) ) )
2010, 15, 17, 18, 19syl13anc 1230 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( (  .0.  C P  /\  P C ( P  .\/  Q ) )  ->  -.  .0.  C ( P  .\/  Q ) ) )
219, 20sylbid 215 . . 3  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  ->  -.  .0.  C ( P  .\/  Q ) ) )
2221necon4ad 2677 . 2  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  (  .0.  C ( P  .\/  Q )  ->  P  =  Q ) )
231, 3hlatjidm 35194 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  ( P  .\/  P
)  =  P )
24233adant3 1016 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  P
)  =  P )
257, 24breqtrrd 4482 . . 3  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  .0.  C ( P 
.\/  P ) )
26 oveq2 6304 . . . 4  |-  ( P  =  Q  ->  ( P  .\/  P )  =  ( P  .\/  Q
) )
2726breq2d 4468 . . 3  |-  ( P  =  Q  ->  (  .0.  C ( P  .\/  P )  <->  .0.  C ( P  .\/  Q ) ) )
2825, 27syl5ibcom 220 . 2  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =  Q  ->  .0.  C ( P  .\/  Q ) ) )
2922, 28impbid 191 1  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  (  .0.  C ( P  .\/  Q )  <-> 
P  =  Q ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   Basecbs 14643   joincjn 15699   0.cp0 15793   OPcops 34998    <o ccvr 35088   Atomscatm 35089   HLchlt 35176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-preset 15683  df-poset 15701  df-plt 15714  df-lub 15730  df-glb 15731  df-join 15732  df-meet 15733  df-p0 15795  df-lat 15802  df-clat 15864  df-oposet 35002  df-ol 35004  df-oml 35005  df-covers 35092  df-ats 35093  df-atl 35124  df-cvlat 35148  df-hlat 35177
This theorem is referenced by:  atcvrj0  35253
  Copyright terms: Public domain W3C validator