Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvr0 Unicode version

Theorem atcvr0 29771
Description: An atom covers zero. (atcv0 23798 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
atomcvr0.z  |-  .0.  =  ( 0. `  K )
atomcvr0.c  |-  C  =  (  <o  `  K )
atomcvr0.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atcvr0  |-  ( ( K  e.  D  /\  P  e.  A )  ->  .0.  C P )

Proof of Theorem atcvr0
StepHypRef Expression
1 eqid 2404 . . 3  |-  ( Base `  K )  =  (
Base `  K )
2 atomcvr0.z . . 3  |-  .0.  =  ( 0. `  K )
3 atomcvr0.c . . 3  |-  C  =  (  <o  `  K )
4 atomcvr0.a . . 3  |-  A  =  ( Atoms `  K )
51, 2, 3, 4isat 29769 . 2  |-  ( K  e.  D  ->  ( P  e.  A  <->  ( P  e.  ( Base `  K
)  /\  .0.  C P ) ) )
65simplbda 608 1  |-  ( ( K  e.  D  /\  P  e.  A )  ->  .0.  C P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   class class class wbr 4172   ` cfv 5413   Basecbs 13424   0.cp0 14421    <o ccvr 29745   Atomscatm 29746
This theorem is referenced by:  0ltat  29774  leatb  29775  atnle0  29792  atlen0  29793  atcmp  29794  atcvreq0  29797  atcvr0eq  29908  lnnat  29909  athgt  29938  ps-2  29960  lhp0lt  30485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5377  df-fun 5415  df-fv 5421  df-ats 29750
  Copyright terms: Public domain W3C validator