Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atbtwnex Structured version   Unicode version

Theorem atbtwnex 34119
Description: Given atoms  P in  X and  Q not in  X, there exists an atom  r not in  X such that the line  Q  .\/  r intersects  X at  P. (Contributed by NM, 1-Aug-2012.)
Hypotheses
Ref Expression
atbtwn.b  |-  B  =  ( Base `  K
)
atbtwn.l  |-  .<_  =  ( le `  K )
atbtwn.j  |-  .\/  =  ( join `  K )
atbtwn.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atbtwnex  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  E. r  e.  A  ( r  =/=  Q  /\  -.  r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) )
Distinct variable groups:    A, r    B, r    K, r    .<_ , r    P, r    Q, r    X, r
Allowed substitution hint:    .\/ ( r)

Proof of Theorem atbtwnex
StepHypRef Expression
1 simpr2 998 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  P  .<_  X )
2 simpr3 999 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  -.  Q  .<_  X )
3 nbrne2 4458 . . . 4  |-  ( ( P  .<_  X  /\  -.  Q  .<_  X )  ->  P  =/=  Q
)
41, 2, 3syl2anc 661 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  P  =/=  Q )
5 atbtwn.l . . . 4  |-  .<_  =  ( le `  K )
6 atbtwn.j . . . 4  |-  .\/  =  ( join `  K )
7 atbtwn.a . . . 4  |-  A  =  ( Atoms `  K )
85, 6, 7hlsupr 34057 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  E. r  e.  A  ( r  =/=  P  /\  r  =/= 
Q  /\  r  .<_  ( P  .\/  Q ) ) )
94, 8syldan 470 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  E. r  e.  A  ( r  =/=  P  /\  r  =/= 
Q  /\  r  .<_  ( P  .\/  Q ) ) )
10 simp32 1028 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  r  =/=  Q )
11 simp31 1027 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  r  =/=  P )
12 simp1l 1015 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A ) )
13 simp2 992 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  r  e.  A )
14 simp1r1 1087 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  X  e.  B )
15 simp1r2 1088 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  P  .<_  X )
16 simp1r3 1089 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  -.  Q  .<_  X )
17 simp33 1029 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  r  .<_  ( P  .\/  Q ) )
18 atbtwn.b . . . . . . . 8  |-  B  =  ( Base `  K
)
1918, 5, 6, 7atbtwn 34117 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( r  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  r  .<_  ( P  .\/  Q ) ) )  ->  (
r  =/=  P  <->  -.  r  .<_  X ) )
2012, 13, 14, 15, 16, 17, 19syl123anc 1240 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  ( r  =/=  P  <->  -.  r  .<_  X ) )
2111, 20mpbid 210 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  -.  r  .<_  X )
22 simp1l1 1084 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  HL )
23 simp1l2 1085 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  P  e.  A )
24 simp1l3 1086 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  Q  e.  A )
255, 6, 7hlatexch2 34067 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( r  e.  A  /\  P  e.  A  /\  Q  e.  A
)  /\  r  =/=  Q )  ->  ( r  .<_  ( P  .\/  Q
)  ->  P  .<_  ( r  .\/  Q ) ) )
2622, 13, 23, 24, 10, 25syl131anc 1236 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  ( r  .<_  ( P  .\/  Q
)  ->  P  .<_  ( r  .\/  Q ) ) )
2717, 26mpd 15 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  P  .<_  ( r  .\/  Q ) )
286, 7hlatjcom 34039 . . . . . . 7  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  r  e.  A )  ->  ( Q  .\/  r
)  =  ( r 
.\/  Q ) )
2922, 24, 13, 28syl3anc 1223 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  ( Q  .\/  r )  =  ( r  .\/  Q ) )
3027, 29breqtrrd 4466 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  P  .<_  ( Q  .\/  r ) )
3110, 21, 303jca 1171 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  r  e.  A  /\  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) )  ->  ( r  =/=  Q  /\  -.  r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) )
32313exp 1190 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  ( r  e.  A  ->  ( ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P  .\/  Q
) )  ->  (
r  =/=  Q  /\  -.  r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) ) )
3332reximdvai 2928 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  ( E. r  e.  A  (
r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P  .\/  Q
) )  ->  E. r  e.  A  ( r  =/=  Q  /\  -.  r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) )
349, 33mpd 15 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  E. r  e.  A  ( r  =/=  Q  /\  -.  r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2655   E.wrex 2808   class class class wbr 4440   ` cfv 5579  (class class class)co 6275   Basecbs 14479   lecple 14551   joincjn 15420   Atomscatm 33935   HLchlt 34022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-poset 15422  df-plt 15434  df-lub 15450  df-glb 15451  df-join 15452  df-meet 15453  df-p0 15515  df-lat 15522  df-clat 15584  df-oposet 33848  df-ol 33850  df-oml 33851  df-covers 33938  df-ats 33939  df-atl 33970  df-cvlat 33994  df-hlat 34023
This theorem is referenced by:  dalem19  34353
  Copyright terms: Public domain W3C validator