Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atbtwn Structured version   Unicode version

Theorem atbtwn 35583
Description: Property of a 3rd atom  R on a line  P  .\/  Q intersecting element  X at  P. (Contributed by NM, 30-Jul-2012.)
Hypotheses
Ref Expression
atbtwn.b  |-  B  =  ( Base `  K
)
atbtwn.l  |-  .<_  =  ( le `  K )
atbtwn.j  |-  .\/  =  ( join `  K )
atbtwn.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atbtwn  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( R  =/=  P  <->  -.  R  .<_  X ) )

Proof of Theorem atbtwn
StepHypRef Expression
1 simpl33 1077 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  R  .<_  ( P  .\/  Q ) )
2 simpr 459 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  R  .<_  X )
3 simpl11 1069 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  K  e.  HL )
4 hllat 35501 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
53, 4syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  K  e.  Lat )
6 simpl2l 1047 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  R  e.  A )
7 atbtwn.b . . . . . . . . . 10  |-  B  =  ( Base `  K
)
8 atbtwn.a . . . . . . . . . 10  |-  A  =  ( Atoms `  K )
97, 8atbase 35427 . . . . . . . . 9  |-  ( R  e.  A  ->  R  e.  B )
106, 9syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  R  e.  B )
11 simpl1 997 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  -> 
( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )
)
12 atbtwn.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
137, 12, 8hlatjcl 35504 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  B )
1411, 13syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  -> 
( P  .\/  Q
)  e.  B )
15 simpl2r 1048 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  X  e.  B )
16 atbtwn.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
17 eqid 2382 . . . . . . . . 9  |-  ( meet `  K )  =  (
meet `  K )
187, 16, 17latlem12 15825 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( R  e.  B  /\  ( P  .\/  Q
)  e.  B  /\  X  e.  B )
)  ->  ( ( R  .<_  ( P  .\/  Q )  /\  R  .<_  X )  <->  R  .<_  ( ( P  .\/  Q ) ( meet `  K
) X ) ) )
195, 10, 14, 15, 18syl13anc 1228 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  -> 
( ( R  .<_  ( P  .\/  Q )  /\  R  .<_  X )  <-> 
R  .<_  ( ( P 
.\/  Q ) (
meet `  K ) X ) ) )
201, 2, 19mpbi2and 919 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  R  .<_  ( ( P 
.\/  Q ) (
meet `  K ) X ) )
21 simpl12 1070 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  P  e.  A )
22 simpl13 1071 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  Q  e.  A )
23 simpl31 1075 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  P  .<_  X )
24 simpl32 1076 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  -.  Q  .<_  X )
257, 16, 12, 17, 82atjm 35582 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) )  -> 
( ( P  .\/  Q ) ( meet `  K
) X )  =  P )
263, 21, 22, 15, 23, 24, 25syl132anc 1244 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  -> 
( ( P  .\/  Q ) ( meet `  K
) X )  =  P )
2720, 26breqtrd 4391 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  R  .<_  P )
28 hlatl 35498 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  AtLat )
293, 28syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  K  e.  AtLat )
3016, 8atcmp 35449 . . . . . 6  |-  ( ( K  e.  AtLat  /\  R  e.  A  /\  P  e.  A )  ->  ( R  .<_  P  <->  R  =  P ) )
3129, 6, 21, 30syl3anc 1226 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  -> 
( R  .<_  P  <->  R  =  P ) )
3227, 31mpbid 210 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  R  =  P )
3332ex 432 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( R  .<_  X  ->  R  =  P ) )
3433necon3ad 2592 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( R  =/=  P  ->  -.  R  .<_  X ) )
35 simp31 1030 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  ->  P  .<_  X )
36 nbrne2 4385 . . . . 5  |-  ( ( P  .<_  X  /\  -.  R  .<_  X )  ->  P  =/=  R
)
3736necomd 2653 . . . 4  |-  ( ( P  .<_  X  /\  -.  R  .<_  X )  ->  R  =/=  P
)
3837ex 432 . . 3  |-  ( P 
.<_  X  ->  ( -.  R  .<_  X  ->  R  =/=  P ) )
3935, 38syl 16 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( -.  R  .<_  X  ->  R  =/=  P ) )
4034, 39impbid 191 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( R  =/=  P  <->  -.  R  .<_  X ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826    =/= wne 2577   class class class wbr 4367   ` cfv 5496  (class class class)co 6196   Basecbs 14634   lecple 14709   joincjn 15690   meetcmee 15691   Latclat 15792   Atomscatm 35401   AtLatcal 35402   HLchlt 35488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-preset 15674  df-poset 15692  df-plt 15705  df-lub 15721  df-glb 15722  df-join 15723  df-meet 15724  df-p0 15786  df-lat 15793  df-clat 15855  df-oposet 35314  df-ol 35316  df-oml 35317  df-covers 35404  df-ats 35405  df-atl 35436  df-cvlat 35460  df-hlat 35489
This theorem is referenced by:  atbtwnexOLDN  35584  atbtwnex  35585
  Copyright terms: Public domain W3C validator