Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atbtwn Structured version   Unicode version

Theorem atbtwn 34117
Description: Property of a 3rd atom  R on a line  P  .\/  Q intersecting element  X at  P. (Contributed by NM, 30-Jul-2012.)
Hypotheses
Ref Expression
atbtwn.b  |-  B  =  ( Base `  K
)
atbtwn.l  |-  .<_  =  ( le `  K )
atbtwn.j  |-  .\/  =  ( join `  K )
atbtwn.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atbtwn  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( R  =/=  P  <->  -.  R  .<_  X ) )

Proof of Theorem atbtwn
StepHypRef Expression
1 simpl33 1074 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  R  .<_  ( P  .\/  Q ) )
2 simpr 461 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  R  .<_  X )
3 simpl11 1066 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  K  e.  HL )
4 hllat 34035 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
53, 4syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  K  e.  Lat )
6 simpl2l 1044 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  R  e.  A )
7 atbtwn.b . . . . . . . . . 10  |-  B  =  ( Base `  K
)
8 atbtwn.a . . . . . . . . . 10  |-  A  =  ( Atoms `  K )
97, 8atbase 33961 . . . . . . . . 9  |-  ( R  e.  A  ->  R  e.  B )
106, 9syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  R  e.  B )
11 simpl1 994 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  -> 
( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )
)
12 atbtwn.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
137, 12, 8hlatjcl 34038 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  B )
1411, 13syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  -> 
( P  .\/  Q
)  e.  B )
15 simpl2r 1045 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  X  e.  B )
16 atbtwn.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
17 eqid 2460 . . . . . . . . 9  |-  ( meet `  K )  =  (
meet `  K )
187, 16, 17latlem12 15554 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( R  e.  B  /\  ( P  .\/  Q
)  e.  B  /\  X  e.  B )
)  ->  ( ( R  .<_  ( P  .\/  Q )  /\  R  .<_  X )  <->  R  .<_  ( ( P  .\/  Q ) ( meet `  K
) X ) ) )
195, 10, 14, 15, 18syl13anc 1225 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  -> 
( ( R  .<_  ( P  .\/  Q )  /\  R  .<_  X )  <-> 
R  .<_  ( ( P 
.\/  Q ) (
meet `  K ) X ) ) )
201, 2, 19mpbi2and 914 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  R  .<_  ( ( P 
.\/  Q ) (
meet `  K ) X ) )
21 simpl12 1067 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  P  e.  A )
22 simpl13 1068 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  Q  e.  A )
23 simpl31 1072 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  P  .<_  X )
24 simpl32 1073 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  -.  Q  .<_  X )
257, 16, 12, 17, 82atjm 34116 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) )  -> 
( ( P  .\/  Q ) ( meet `  K
) X )  =  P )
263, 21, 22, 15, 23, 24, 25syl132anc 1241 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  -> 
( ( P  .\/  Q ) ( meet `  K
) X )  =  P )
2720, 26breqtrd 4464 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  R  .<_  P )
28 hlatl 34032 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  AtLat )
293, 28syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  K  e.  AtLat )
3016, 8atcmp 33983 . . . . . 6  |-  ( ( K  e.  AtLat  /\  R  e.  A  /\  P  e.  A )  ->  ( R  .<_  P  <->  R  =  P ) )
3129, 6, 21, 30syl3anc 1223 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  -> 
( R  .<_  P  <->  R  =  P ) )
3227, 31mpbid 210 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  R  =  P )
3332ex 434 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( R  .<_  X  ->  R  =  P ) )
3433necon3ad 2670 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( R  =/=  P  ->  -.  R  .<_  X ) )
35 simp31 1027 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  ->  P  .<_  X )
36 nbrne2 4458 . . . . 5  |-  ( ( P  .<_  X  /\  -.  R  .<_  X )  ->  P  =/=  R
)
3736necomd 2731 . . . 4  |-  ( ( P  .<_  X  /\  -.  R  .<_  X )  ->  R  =/=  P
)
3837ex 434 . . 3  |-  ( P 
.<_  X  ->  ( -.  R  .<_  X  ->  R  =/=  P ) )
3935, 38syl 16 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( -.  R  .<_  X  ->  R  =/=  P ) )
4034, 39impbid 191 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( R  =/=  P  <->  -.  R  .<_  X ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2655   class class class wbr 4440   ` cfv 5579  (class class class)co 6275   Basecbs 14479   lecple 14551   joincjn 15420   meetcmee 15421   Latclat 15521   Atomscatm 33935   AtLatcal 33936   HLchlt 34022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-poset 15422  df-plt 15434  df-lub 15450  df-glb 15451  df-join 15452  df-meet 15453  df-p0 15515  df-lat 15522  df-clat 15584  df-oposet 33848  df-ol 33850  df-oml 33851  df-covers 33938  df-ats 33939  df-atl 33970  df-cvlat 33994  df-hlat 34023
This theorem is referenced by:  atbtwnexOLDN  34118  atbtwnex  34119
  Copyright terms: Public domain W3C validator