Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atbtwn Structured version   Visualization version   Unicode version

Theorem atbtwn 33056
Description: Property of a 3rd atom  R on a line  P  .\/  Q intersecting element  X at  P. (Contributed by NM, 30-Jul-2012.)
Hypotheses
Ref Expression
atbtwn.b  |-  B  =  ( Base `  K
)
atbtwn.l  |-  .<_  =  ( le `  K )
atbtwn.j  |-  .\/  =  ( join `  K )
atbtwn.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atbtwn  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( R  =/=  P  <->  -.  R  .<_  X ) )

Proof of Theorem atbtwn
StepHypRef Expression
1 simpl33 1097 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  R  .<_  ( P  .\/  Q ) )
2 simpr 467 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  R  .<_  X )
3 simpl11 1089 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  K  e.  HL )
4 hllat 32974 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
53, 4syl 17 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  K  e.  Lat )
6 simpl2l 1067 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  R  e.  A )
7 atbtwn.b . . . . . . . . . 10  |-  B  =  ( Base `  K
)
8 atbtwn.a . . . . . . . . . 10  |-  A  =  ( Atoms `  K )
97, 8atbase 32900 . . . . . . . . 9  |-  ( R  e.  A  ->  R  e.  B )
106, 9syl 17 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  R  e.  B )
11 simpl1 1017 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  -> 
( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )
)
12 atbtwn.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
137, 12, 8hlatjcl 32977 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  B )
1411, 13syl 17 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  -> 
( P  .\/  Q
)  e.  B )
15 simpl2r 1068 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  X  e.  B )
16 atbtwn.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
17 eqid 2462 . . . . . . . . 9  |-  ( meet `  K )  =  (
meet `  K )
187, 16, 17latlem12 16373 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( R  e.  B  /\  ( P  .\/  Q
)  e.  B  /\  X  e.  B )
)  ->  ( ( R  .<_  ( P  .\/  Q )  /\  R  .<_  X )  <->  R  .<_  ( ( P  .\/  Q ) ( meet `  K
) X ) ) )
195, 10, 14, 15, 18syl13anc 1278 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  -> 
( ( R  .<_  ( P  .\/  Q )  /\  R  .<_  X )  <-> 
R  .<_  ( ( P 
.\/  Q ) (
meet `  K ) X ) ) )
201, 2, 19mpbi2and 937 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  R  .<_  ( ( P 
.\/  Q ) (
meet `  K ) X ) )
21 simpl12 1090 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  P  e.  A )
22 simpl13 1091 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  Q  e.  A )
23 simpl31 1095 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  P  .<_  X )
24 simpl32 1096 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  -.  Q  .<_  X )
257, 16, 12, 17, 82atjm 33055 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) )  -> 
( ( P  .\/  Q ) ( meet `  K
) X )  =  P )
263, 21, 22, 15, 23, 24, 25syl132anc 1294 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  -> 
( ( P  .\/  Q ) ( meet `  K
) X )  =  P )
2720, 26breqtrd 4441 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  R  .<_  P )
28 hlatl 32971 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  AtLat )
293, 28syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  K  e.  AtLat )
3016, 8atcmp 32922 . . . . . 6  |-  ( ( K  e.  AtLat  /\  R  e.  A  /\  P  e.  A )  ->  ( R  .<_  P  <->  R  =  P ) )
3129, 6, 21, 30syl3anc 1276 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  -> 
( R  .<_  P  <->  R  =  P ) )
3227, 31mpbid 215 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  /\  R  .<_  X )  ->  R  =  P )
3332ex 440 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( R  .<_  X  ->  R  =  P ) )
3433necon3ad 2649 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( R  =/=  P  ->  -.  R  .<_  X ) )
35 simp31 1050 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  ->  P  .<_  X )
36 nbrne2 4435 . . . . 5  |-  ( ( P  .<_  X  /\  -.  R  .<_  X )  ->  P  =/=  R
)
3736necomd 2691 . . . 4  |-  ( ( P  .<_  X  /\  -.  R  .<_  X )  ->  R  =/=  P
)
3837ex 440 . . 3  |-  ( P 
.<_  X  ->  ( -.  R  .<_  X  ->  R  =/=  P ) )
3935, 38syl 17 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( -.  R  .<_  X  ->  R  =/=  P ) )
4034, 39impbid 195 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  X  e.  B
)  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( R  =/=  P  <->  -.  R  .<_  X ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1455    e. wcel 1898    =/= wne 2633   class class class wbr 4416   ` cfv 5601  (class class class)co 6315   Basecbs 15170   lecple 15246   joincjn 16238   meetcmee 16239   Latclat 16340   Atomscatm 32874   AtLatcal 32875   HLchlt 32961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6277  df-ov 6318  df-oprab 6319  df-preset 16222  df-poset 16240  df-plt 16253  df-lub 16269  df-glb 16270  df-join 16271  df-meet 16272  df-p0 16334  df-lat 16341  df-clat 16403  df-oposet 32787  df-ol 32789  df-oml 32790  df-covers 32877  df-ats 32878  df-atl 32909  df-cvlat 32933  df-hlat 32962
This theorem is referenced by:  atbtwnexOLDN  33057  atbtwnex  33058
  Copyright terms: Public domain W3C validator