MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atantayl Unicode version

Theorem atantayl 20730
Description: The Taylor series for arctan ( A
). (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypothesis
Ref Expression
atantayl.1  |-  F  =  ( n  e.  NN  |->  ( ( ( _i  x.  ( ( -u _i ^ n )  -  ( _i ^ n ) ) )  /  2
)  x.  ( ( A ^ n )  /  n ) ) )
Assertion
Ref Expression
atantayl  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq  1 (  +  ,  F )  ~~>  (arctan `  A ) )
Distinct variable group:    A, n
Allowed substitution hint:    F( n)

Proof of Theorem atantayl
Dummy variables  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 10477 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1z 10267 . . . 4  |-  1  e.  ZZ
32a1i 11 . . 3  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
1  e.  ZZ )
4 ax-icn 9005 . . . 4  |-  _i  e.  CC
5 halfcl 10149 . . . 4  |-  ( _i  e.  CC  ->  (
_i  /  2 )  e.  CC )
64, 5mp1i 12 . . 3  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( _i  /  2
)  e.  CC )
7 simpl 444 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  A  e.  CC )
8 mulcl 9030 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
94, 7, 8sylancr 645 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( _i  x.  A
)  e.  CC )
109negcld 9354 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  -u ( _i  x.  A
)  e.  CC )
119absnegd 12206 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  -u (
_i  x.  A )
)  =  ( abs `  ( _i  x.  A
) ) )
12 absmul 12054 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
_i  x.  A )
)  =  ( ( abs `  _i )  x.  ( abs `  A
) ) )
134, 7, 12sylancr 645 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  (
_i  x.  A )
)  =  ( ( abs `  _i )  x.  ( abs `  A
) ) )
14 absi 12046 . . . . . . . . . . 11  |-  ( abs `  _i )  =  1
1514oveq1i 6050 . . . . . . . . . 10  |-  ( ( abs `  _i )  x.  ( abs `  A
) )  =  ( 1  x.  ( abs `  A ) )
16 abscl 12038 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
1716adantr 452 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  A
)  e.  RR )
1817recnd 9070 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  A
)  e.  CC )
1918mulid2d 9062 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( 1  x.  ( abs `  A ) )  =  ( abs `  A
) )
2015, 19syl5eq 2448 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( ( abs `  _i )  x.  ( abs `  A ) )  =  ( abs `  A
) )
2111, 13, 203eqtrd 2440 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  -u (
_i  x.  A )
)  =  ( abs `  A ) )
22 simpr 448 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  A
)  <  1 )
2321, 22eqbrtrd 4192 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  -u (
_i  x.  A )
)  <  1 )
24 logtayl 20504 . . . . . . 7  |-  ( (
-u ( _i  x.  A )  e.  CC  /\  ( abs `  -u (
_i  x.  A )
)  <  1 )  ->  seq  1 (  +  ,  ( n  e.  NN  |->  ( (
-u ( _i  x.  A ) ^ n
)  /  n ) ) )  ~~>  -u ( log `  ( 1  - 
-u ( _i  x.  A ) ) ) )
2510, 23, 24syl2anc 643 . . . . . 6  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq  1 (  +  , 
( n  e.  NN  |->  ( ( -u (
_i  x.  A ) ^ n )  /  n ) ) )  ~~> 
-u ( log `  (
1  -  -u (
_i  x.  A )
) ) )
26 ax-1cn 9004 . . . . . . . . 9  |-  1  e.  CC
27 subneg 9306 . . . . . . . . 9  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  - 
-u ( _i  x.  A ) )  =  ( 1  +  ( _i  x.  A ) ) )
2826, 9, 27sylancr 645 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( 1  -  -u (
_i  x.  A )
)  =  ( 1  +  ( _i  x.  A ) ) )
2928fveq2d 5691 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( log `  (
1  -  -u (
_i  x.  A )
) )  =  ( log `  ( 1  +  ( _i  x.  A ) ) ) )
3029negeqd 9256 . . . . . 6  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  -u ( log `  (
1  -  -u (
_i  x.  A )
) )  =  -u ( log `  ( 1  +  ( _i  x.  A ) ) ) )
3125, 30breqtrd 4196 . . . . 5  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq  1 (  +  , 
( n  e.  NN  |->  ( ( -u (
_i  x.  A ) ^ n )  /  n ) ) )  ~~> 
-u ( log `  (
1  +  ( _i  x.  A ) ) ) )
32 seqex 11280 . . . . . 6  |-  seq  1
(  +  ,  ( n  e.  NN  |->  ( ( ( -u (
_i  x.  A ) ^ n )  /  n )  -  (
( ( _i  x.  A ) ^ n
)  /  n ) ) ) )  e. 
_V
3332a1i 11 . . . . 5  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq  1 (  +  , 
( n  e.  NN  |->  ( ( ( -u ( _i  x.  A
) ^ n )  /  n )  -  ( ( ( _i  x.  A ) ^
n )  /  n
) ) ) )  e.  _V )
3411, 23eqbrtrrd 4194 . . . . . 6  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  (
_i  x.  A )
)  <  1 )
35 logtayl 20504 . . . . . 6  |-  ( ( ( _i  x.  A
)  e.  CC  /\  ( abs `  ( _i  x.  A ) )  <  1 )  ->  seq  1 (  +  , 
( n  e.  NN  |->  ( ( ( _i  x.  A ) ^
n )  /  n
) ) )  ~~>  -u ( log `  ( 1  -  ( _i  x.  A
) ) ) )
369, 34, 35syl2anc 643 . . . . 5  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq  1 (  +  , 
( n  e.  NN  |->  ( ( ( _i  x.  A ) ^
n )  /  n
) ) )  ~~>  -u ( log `  ( 1  -  ( _i  x.  A
) ) ) )
37 oveq2 6048 . . . . . . . . . . 11  |-  ( n  =  m  ->  ( -u ( _i  x.  A
) ^ n )  =  ( -u (
_i  x.  A ) ^ m ) )
38 id 20 . . . . . . . . . . 11  |-  ( n  =  m  ->  n  =  m )
3937, 38oveq12d 6058 . . . . . . . . . 10  |-  ( n  =  m  ->  (
( -u ( _i  x.  A ) ^ n
)  /  n )  =  ( ( -u ( _i  x.  A
) ^ m )  /  m ) )
40 eqid 2404 . . . . . . . . . 10  |-  ( n  e.  NN  |->  ( (
-u ( _i  x.  A ) ^ n
)  /  n ) )  =  ( n  e.  NN  |->  ( (
-u ( _i  x.  A ) ^ n
)  /  n ) )
41 ovex 6065 . . . . . . . . . 10  |-  ( (
-u ( _i  x.  A ) ^ m
)  /  m )  e.  _V
4239, 40, 41fvmpt 5765 . . . . . . . . 9  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( ( -u (
_i  x.  A ) ^ n )  /  n ) ) `  m )  =  ( ( -u ( _i  x.  A ) ^
m )  /  m
) )
4342adantl 453 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( (
-u ( _i  x.  A ) ^ n
)  /  n ) ) `  m )  =  ( ( -u ( _i  x.  A
) ^ m )  /  m ) )
44 nnnn0 10184 . . . . . . . . . 10  |-  ( m  e.  NN  ->  m  e.  NN0 )
45 expcl 11354 . . . . . . . . . 10  |-  ( (
-u ( _i  x.  A )  e.  CC  /\  m  e.  NN0 )  ->  ( -u ( _i  x.  A ) ^
m )  e.  CC )
4610, 44, 45syl2an 464 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( -u (
_i  x.  A ) ^ m )  e.  CC )
47 nncn 9964 . . . . . . . . . 10  |-  ( m  e.  NN  ->  m  e.  CC )
4847adantl 453 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  m  e.  CC )
49 nnne0 9988 . . . . . . . . . 10  |-  ( m  e.  NN  ->  m  =/=  0 )
5049adantl 453 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  m  =/=  0
)
5146, 48, 50divcld 9746 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( -u ( _i  x.  A
) ^ m )  /  m )  e.  CC )
5243, 51eqeltrd 2478 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( (
-u ( _i  x.  A ) ^ n
)  /  n ) ) `  m )  e.  CC )
531, 3, 52serf 11306 . . . . . 6  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq  1 (  +  , 
( n  e.  NN  |->  ( ( -u (
_i  x.  A ) ^ n )  /  n ) ) ) : NN --> CC )
5453ffvelrnda 5829 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  (  seq  1
(  +  ,  ( n  e.  NN  |->  ( ( -u ( _i  x.  A ) ^
n )  /  n
) ) ) `  k )  e.  CC )
55 oveq2 6048 . . . . . . . . . . 11  |-  ( n  =  m  ->  (
( _i  x.  A
) ^ n )  =  ( ( _i  x.  A ) ^
m ) )
5655, 38oveq12d 6058 . . . . . . . . . 10  |-  ( n  =  m  ->  (
( ( _i  x.  A ) ^ n
)  /  n )  =  ( ( ( _i  x.  A ) ^ m )  /  m ) )
57 eqid 2404 . . . . . . . . . 10  |-  ( n  e.  NN  |->  ( ( ( _i  x.  A
) ^ n )  /  n ) )  =  ( n  e.  NN  |->  ( ( ( _i  x.  A ) ^ n )  /  n ) )
58 ovex 6065 . . . . . . . . . 10  |-  ( ( ( _i  x.  A
) ^ m )  /  m )  e. 
_V
5956, 57, 58fvmpt 5765 . . . . . . . . 9  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( ( ( _i  x.  A ) ^
n )  /  n
) ) `  m
)  =  ( ( ( _i  x.  A
) ^ m )  /  m ) )
6059adantl 453 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( ( _i  x.  A
) ^ n )  /  n ) ) `
 m )  =  ( ( ( _i  x.  A ) ^
m )  /  m
) )
61 expcl 11354 . . . . . . . . . 10  |-  ( ( ( _i  x.  A
)  e.  CC  /\  m  e.  NN0 )  -> 
( ( _i  x.  A ) ^ m
)  e.  CC )
629, 44, 61syl2an 464 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( _i  x.  A ) ^
m )  e.  CC )
6362, 48, 50divcld 9746 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( ( _i  x.  A ) ^ m )  /  m )  e.  CC )
6460, 63eqeltrd 2478 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( ( _i  x.  A
) ^ n )  /  n ) ) `
 m )  e.  CC )
651, 3, 64serf 11306 . . . . . 6  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq  1 (  +  , 
( n  e.  NN  |->  ( ( ( _i  x.  A ) ^
n )  /  n
) ) ) : NN --> CC )
6665ffvelrnda 5829 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  (  seq  1
(  +  ,  ( n  e.  NN  |->  ( ( ( _i  x.  A ) ^ n
)  /  n ) ) ) `  k
)  e.  CC )
67 simpr 448 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  k  e.  NN )
6867, 1syl6eleq 2494 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  k  e.  (
ZZ>= `  1 ) )
69 simpl 444 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( A  e.  CC  /\  ( abs `  A )  <  1
) )
70 elfznn 11036 . . . . . . 7  |-  ( m  e.  ( 1 ... k )  ->  m  e.  NN )
7169, 70, 52syl2an 464 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  ( abs `  A )  <  1
)  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  (
( n  e.  NN  |->  ( ( -u (
_i  x.  A ) ^ n )  /  n ) ) `  m )  e.  CC )
7269, 70, 64syl2an 464 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  ( abs `  A )  <  1
)  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  (
( n  e.  NN  |->  ( ( ( _i  x.  A ) ^
n )  /  n
) ) `  m
)  e.  CC )
7339, 56oveq12d 6058 . . . . . . . . . 10  |-  ( n  =  m  ->  (
( ( -u (
_i  x.  A ) ^ n )  /  n )  -  (
( ( _i  x.  A ) ^ n
)  /  n ) )  =  ( ( ( -u ( _i  x.  A ) ^
m )  /  m
)  -  ( ( ( _i  x.  A
) ^ m )  /  m ) ) )
74 eqid 2404 . . . . . . . . . 10  |-  ( n  e.  NN  |->  ( ( ( -u ( _i  x.  A ) ^
n )  /  n
)  -  ( ( ( _i  x.  A
) ^ n )  /  n ) ) )  =  ( n  e.  NN  |->  ( ( ( -u ( _i  x.  A ) ^
n )  /  n
)  -  ( ( ( _i  x.  A
) ^ n )  /  n ) ) )
75 ovex 6065 . . . . . . . . . 10  |-  ( ( ( -u ( _i  x.  A ) ^
m )  /  m
)  -  ( ( ( _i  x.  A
) ^ m )  /  m ) )  e.  _V
7673, 74, 75fvmpt 5765 . . . . . . . . 9  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( ( ( -u ( _i  x.  A
) ^ n )  /  n )  -  ( ( ( _i  x.  A ) ^
n )  /  n
) ) ) `  m )  =  ( ( ( -u (
_i  x.  A ) ^ m )  /  m )  -  (
( ( _i  x.  A ) ^ m
)  /  m ) ) )
7776adantl 453 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( ( -u ( _i  x.  A ) ^
n )  /  n
)  -  ( ( ( _i  x.  A
) ^ n )  /  n ) ) ) `  m )  =  ( ( (
-u ( _i  x.  A ) ^ m
)  /  m )  -  ( ( ( _i  x.  A ) ^ m )  /  m ) ) )
7843, 60oveq12d 6058 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( ( n  e.  NN  |->  ( ( -u ( _i  x.  A ) ^
n )  /  n
) ) `  m
)  -  ( ( n  e.  NN  |->  ( ( ( _i  x.  A ) ^ n
)  /  n ) ) `  m ) )  =  ( ( ( -u ( _i  x.  A ) ^
m )  /  m
)  -  ( ( ( _i  x.  A
) ^ m )  /  m ) ) )
7977, 78eqtr4d 2439 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( ( -u ( _i  x.  A ) ^
n )  /  n
)  -  ( ( ( _i  x.  A
) ^ n )  /  n ) ) ) `  m )  =  ( ( ( n  e.  NN  |->  ( ( -u ( _i  x.  A ) ^
n )  /  n
) ) `  m
)  -  ( ( n  e.  NN  |->  ( ( ( _i  x.  A ) ^ n
)  /  n ) ) `  m ) ) )
8069, 70, 79syl2an 464 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  ( abs `  A )  <  1
)  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  (
( n  e.  NN  |->  ( ( ( -u ( _i  x.  A
) ^ n )  /  n )  -  ( ( ( _i  x.  A ) ^
n )  /  n
) ) ) `  m )  =  ( ( ( n  e.  NN  |->  ( ( -u ( _i  x.  A
) ^ n )  /  n ) ) `
 m )  -  ( ( n  e.  NN  |->  ( ( ( _i  x.  A ) ^ n )  /  n ) ) `  m ) ) )
8168, 71, 72, 80sersub 11321 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  (  seq  1
(  +  ,  ( n  e.  NN  |->  ( ( ( -u (
_i  x.  A ) ^ n )  /  n )  -  (
( ( _i  x.  A ) ^ n
)  /  n ) ) ) ) `  k )  =  ( (  seq  1 (  +  ,  ( n  e.  NN  |->  ( (
-u ( _i  x.  A ) ^ n
)  /  n ) ) ) `  k
)  -  (  seq  1 (  +  , 
( n  e.  NN  |->  ( ( ( _i  x.  A ) ^
n )  /  n
) ) ) `  k ) ) )
821, 3, 31, 33, 36, 54, 66, 81climsub 12382 . . . 4  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq  1 (  +  , 
( n  e.  NN  |->  ( ( ( -u ( _i  x.  A
) ^ n )  /  n )  -  ( ( ( _i  x.  A ) ^
n )  /  n
) ) ) )  ~~>  ( -u ( log `  ( 1  +  ( _i  x.  A ) ) )  -  -u ( log `  ( 1  -  ( _i  x.  A
) ) ) ) )
83 addcl 9028 . . . . . . 7  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  +  ( _i  x.  A
) )  e.  CC )
8426, 9, 83sylancr 645 . . . . . 6  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( 1  +  ( _i  x.  A ) )  e.  CC )
85 bndatandm 20722 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  A  e.  dom arctan )
86 atandm2 20670 . . . . . . . 8  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  ( 1  -  ( _i  x.  A ) )  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 ) )
8785, 86sylib 189 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( A  e.  CC  /\  ( 1  -  (
_i  x.  A )
)  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 ) )
8887simp3d 971 . . . . . 6  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( 1  +  ( _i  x.  A ) )  =/=  0 )
8984, 88logcld 20421 . . . . 5  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( log `  (
1  +  ( _i  x.  A ) ) )  e.  CC )
90 subcl 9261 . . . . . . 7  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  -  ( _i  x.  A
) )  e.  CC )
9126, 9, 90sylancr 645 . . . . . 6  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( 1  -  (
_i  x.  A )
)  e.  CC )
9287simp2d 970 . . . . . 6  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( 1  -  (
_i  x.  A )
)  =/=  0 )
9391, 92logcld 20421 . . . . 5  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( log `  (
1  -  ( _i  x.  A ) ) )  e.  CC )
9489, 93neg2subd 9384 . . . 4  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( -u ( log `  (
1  +  ( _i  x.  A ) ) )  -  -u ( log `  ( 1  -  ( _i  x.  A
) ) ) )  =  ( ( log `  ( 1  -  (
_i  x.  A )
) )  -  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) )
9582, 94breqtrd 4196 . . 3  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq  1 (  +  , 
( n  e.  NN  |->  ( ( ( -u ( _i  x.  A
) ^ n )  /  n )  -  ( ( ( _i  x.  A ) ^
n )  /  n
) ) ) )  ~~>  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )
9651, 63subcld 9367 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( (
-u ( _i  x.  A ) ^ m
)  /  m )  -  ( ( ( _i  x.  A ) ^ m )  /  m ) )  e.  CC )
9777, 96eqeltrd 2478 . . 3  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( ( -u ( _i  x.  A ) ^
n )  /  n
)  -  ( ( ( _i  x.  A
) ^ n )  /  n ) ) ) `  m )  e.  CC )
984a1i 11 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  _i  e.  CC )
994negcli 9324 . . . . . . . . 9  |-  -u _i  e.  CC
10044adantl 453 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  m  e.  NN0 )
101 expcl 11354 . . . . . . . . 9  |-  ( (
-u _i  e.  CC  /\  m  e.  NN0 )  ->  ( -u _i ^
m )  e.  CC )
10299, 100, 101sylancr 645 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( -u _i ^ m )  e.  CC )
103 expcl 11354 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  m  e.  NN0 )  -> 
( _i ^ m
)  e.  CC )
1044, 100, 103sylancr 645 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( _i ^
m )  e.  CC )
105102, 104subcld 9367 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( -u _i ^ m )  -  ( _i ^ m ) )  e.  CC )
106 2cn 10026 . . . . . . . 8  |-  2  e.  CC
107106a1i 11 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  2  e.  CC )
108 2ne0 10039 . . . . . . . 8  |-  2  =/=  0
109108a1i 11 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  2  =/=  0
)
11098, 105, 107, 109div23d 9783 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( _i  x.  ( ( -u _i ^ m )  -  ( _i ^ m ) ) )  /  2
)  =  ( ( _i  /  2 )  x.  ( ( -u _i ^ m )  -  ( _i ^ m ) ) ) )
111110oveq1d 6055 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( ( _i  x.  ( (
-u _i ^ m
)  -  ( _i
^ m ) ) )  /  2 )  x.  ( ( A ^ m )  /  m ) )  =  ( ( ( _i 
/  2 )  x.  ( ( -u _i ^ m )  -  ( _i ^ m ) ) )  x.  (
( A ^ m
)  /  m ) ) )
1126adantr 452 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( _i  / 
2 )  e.  CC )
113 expcl 11354 . . . . . . . 8  |-  ( ( A  e.  CC  /\  m  e.  NN0 )  -> 
( A ^ m
)  e.  CC )
1147, 44, 113syl2an 464 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( A ^
m )  e.  CC )
115114, 48, 50divcld 9746 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( A ^ m )  /  m )  e.  CC )
116112, 105, 115mulassd 9067 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( ( _i  /  2 )  x.  ( ( -u _i ^ m )  -  ( _i ^ m ) ) )  x.  (
( A ^ m
)  /  m ) )  =  ( ( _i  /  2 )  x.  ( ( (
-u _i ^ m
)  -  ( _i
^ m ) )  x.  ( ( A ^ m )  /  m ) ) ) )
117102, 104, 114subdird 9446 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( (
-u _i ^ m
)  -  ( _i
^ m ) )  x.  ( A ^
m ) )  =  ( ( ( -u _i ^ m )  x.  ( A ^ m
) )  -  (
( _i ^ m
)  x.  ( A ^ m ) ) ) )
1187adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  A  e.  CC )
119 mulneg1 9426 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  =  -u ( _i  x.  A
) )
1204, 118, 119sylancr 645 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( -u _i  x.  A )  =  -u ( _i  x.  A
) )
121120oveq1d 6055 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( -u _i  x.  A ) ^
m )  =  (
-u ( _i  x.  A ) ^ m
) )
12299a1i 11 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  -u _i  e.  CC )
123122, 118, 100mulexpd 11493 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( -u _i  x.  A ) ^
m )  =  ( ( -u _i ^
m )  x.  ( A ^ m ) ) )
124121, 123eqtr3d 2438 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( -u (
_i  x.  A ) ^ m )  =  ( ( -u _i ^ m )  x.  ( A ^ m
) ) )
12598, 118, 100mulexpd 11493 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( _i  x.  A ) ^
m )  =  ( ( _i ^ m
)  x.  ( A ^ m ) ) )
126124, 125oveq12d 6058 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( -u ( _i  x.  A
) ^ m )  -  ( ( _i  x.  A ) ^
m ) )  =  ( ( ( -u _i ^ m )  x.  ( A ^ m
) )  -  (
( _i ^ m
)  x.  ( A ^ m ) ) ) )
127117, 126eqtr4d 2439 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( (
-u _i ^ m
)  -  ( _i
^ m ) )  x.  ( A ^
m ) )  =  ( ( -u (
_i  x.  A ) ^ m )  -  ( ( _i  x.  A ) ^ m
) ) )
128127oveq1d 6055 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( ( ( -u _i ^
m )  -  (
_i ^ m ) )  x.  ( A ^ m ) )  /  m )  =  ( ( ( -u ( _i  x.  A
) ^ m )  -  ( ( _i  x.  A ) ^
m ) )  /  m ) )
129105, 114, 48, 50divassd 9781 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( ( ( -u _i ^
m )  -  (
_i ^ m ) )  x.  ( A ^ m ) )  /  m )  =  ( ( ( -u _i ^ m )  -  ( _i ^ m ) )  x.  ( ( A ^ m )  /  m ) ) )
13046, 62, 48, 50divsubdird 9785 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( (
-u ( _i  x.  A ) ^ m
)  -  ( ( _i  x.  A ) ^ m ) )  /  m )  =  ( ( ( -u ( _i  x.  A
) ^ m )  /  m )  -  ( ( ( _i  x.  A ) ^
m )  /  m
) ) )
131128, 129, 1303eqtr3d 2444 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( (
-u _i ^ m
)  -  ( _i
^ m ) )  x.  ( ( A ^ m )  /  m ) )  =  ( ( ( -u ( _i  x.  A
) ^ m )  /  m )  -  ( ( ( _i  x.  A ) ^
m )  /  m
) ) )
132131oveq2d 6056 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( _i 
/  2 )  x.  ( ( ( -u _i ^ m )  -  ( _i ^ m ) )  x.  ( ( A ^ m )  /  m ) ) )  =  ( ( _i  /  2 )  x.  ( ( (
-u ( _i  x.  A ) ^ m
)  /  m )  -  ( ( ( _i  x.  A ) ^ m )  /  m ) ) ) )
133111, 116, 1323eqtrd 2440 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( ( _i  x.  ( (
-u _i ^ m
)  -  ( _i
^ m ) ) )  /  2 )  x.  ( ( A ^ m )  /  m ) )  =  ( ( _i  / 
2 )  x.  (
( ( -u (
_i  x.  A ) ^ m )  /  m )  -  (
( ( _i  x.  A ) ^ m
)  /  m ) ) ) )
134 oveq2 6048 . . . . . . . . . 10  |-  ( n  =  m  ->  ( -u _i ^ n )  =  ( -u _i ^ m ) )
135 oveq2 6048 . . . . . . . . . 10  |-  ( n  =  m  ->  (
_i ^ n )  =  ( _i ^
m ) )
136134, 135oveq12d 6058 . . . . . . . . 9  |-  ( n  =  m  ->  (
( -u _i ^ n
)  -  ( _i
^ n ) )  =  ( ( -u _i ^ m )  -  ( _i ^ m ) ) )
137136oveq2d 6056 . . . . . . . 8  |-  ( n  =  m  ->  (
_i  x.  ( ( -u _i ^ n )  -  ( _i ^
n ) ) )  =  ( _i  x.  ( ( -u _i ^ m )  -  ( _i ^ m ) ) ) )
138137oveq1d 6055 . . . . . . 7  |-  ( n  =  m  ->  (
( _i  x.  (
( -u _i ^ n
)  -  ( _i
^ n ) ) )  /  2 )  =  ( ( _i  x.  ( ( -u _i ^ m )  -  ( _i ^ m ) ) )  /  2
) )
139 oveq2 6048 . . . . . . . 8  |-  ( n  =  m  ->  ( A ^ n )  =  ( A ^ m
) )
140139, 38oveq12d 6058 . . . . . . 7  |-  ( n  =  m  ->  (
( A ^ n
)  /  n )  =  ( ( A ^ m )  /  m ) )
141138, 140oveq12d 6058 . . . . . 6  |-  ( n  =  m  ->  (
( ( _i  x.  ( ( -u _i ^ n )  -  ( _i ^ n ) ) )  /  2
)  x.  ( ( A ^ n )  /  n ) )  =  ( ( ( _i  x.  ( (
-u _i ^ m
)  -  ( _i
^ m ) ) )  /  2 )  x.  ( ( A ^ m )  /  m ) ) )
142 atantayl.1 . . . . . 6  |-  F  =  ( n  e.  NN  |->  ( ( ( _i  x.  ( ( -u _i ^ n )  -  ( _i ^ n ) ) )  /  2
)  x.  ( ( A ^ n )  /  n ) ) )
143 ovex 6065 . . . . . 6  |-  ( ( ( _i  x.  (
( -u _i ^ m
)  -  ( _i
^ m ) ) )  /  2 )  x.  ( ( A ^ m )  /  m ) )  e. 
_V
144141, 142, 143fvmpt 5765 . . . . 5  |-  ( m  e.  NN  ->  ( F `  m )  =  ( ( ( _i  x.  ( (
-u _i ^ m
)  -  ( _i
^ m ) ) )  /  2 )  x.  ( ( A ^ m )  /  m ) ) )
145144adantl 453 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( F `  m )  =  ( ( ( _i  x.  ( ( -u _i ^ m )  -  ( _i ^ m ) ) )  /  2
)  x.  ( ( A ^ m )  /  m ) ) )
14677oveq2d 6056 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( ( _i 
/  2 )  x.  ( ( n  e.  NN  |->  ( ( (
-u ( _i  x.  A ) ^ n
)  /  n )  -  ( ( ( _i  x.  A ) ^ n )  /  n ) ) ) `
 m ) )  =  ( ( _i 
/  2 )  x.  ( ( ( -u ( _i  x.  A
) ^ m )  /  m )  -  ( ( ( _i  x.  A ) ^
m )  /  m
) ) ) )
147133, 145, 1463eqtr4d 2446 . . 3  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  m  e.  NN )  ->  ( F `  m )  =  ( ( _i  /  2
)  x.  ( ( n  e.  NN  |->  ( ( ( -u (
_i  x.  A ) ^ n )  /  n )  -  (
( ( _i  x.  A ) ^ n
)  /  n ) ) ) `  m
) ) )
1481, 3, 6, 95, 97, 147isermulc2 12406 . 2  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq  1 (  +  ,  F )  ~~>  ( ( _i  /  2 )  x.  ( ( log `  ( 1  -  (
_i  x.  A )
) )  -  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) ) )
149 atanval 20677 . . 3  |-  ( A  e.  dom arctan  ->  (arctan `  A )  =  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  A ) ) )  -  ( log `  (
1  +  ( _i  x.  A ) ) ) ) ) )
15085, 149syl 16 . 2  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
(arctan `  A )  =  ( ( _i 
/  2 )  x.  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) ) )
151148, 150breqtrrd 4198 1  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq  1 (  +  ,  F )  ~~>  (arctan `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   _Vcvv 2916   class class class wbr 4172    e. cmpt 4226   dom cdm 4837   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947   _ici 8948    + caddc 8949    x. cmul 8951    < clt 9076    - cmin 9247   -ucneg 9248    / cdiv 9633   NNcn 9956   2c2 10005   NN0cn0 10177   ZZcz 10238   ZZ>=cuz 10444   ...cfz 10999    seq cseq 11278   ^cexp 11337   abscabs 11994    ~~> cli 12233   logclog 20405  arctancatan 20657
This theorem is referenced by:  atantayl2  20731
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-tan 12629  df-pi 12630  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-cmp 17404  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-ulm 20246  df-log 20407  df-atan 20660
  Copyright terms: Public domain W3C validator