MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanlogaddlem Structured version   Unicode version

Theorem atanlogaddlem 23110
Description: Lemma for atanlogadd 23111. (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
atanlogaddlem  |-  ( ( A  e.  dom arctan  /\  0  <_  ( Re `  A
) )  ->  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e. 
ran  log )

Proof of Theorem atanlogaddlem
StepHypRef Expression
1 0re 9608 . . . 4  |-  0  e.  RR
2 atandm2 23074 . . . . . 6  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  ( 1  -  ( _i  x.  A ) )  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 ) )
32simp1bi 1011 . . . . 5  |-  ( A  e.  dom arctan  ->  A  e.  CC )
43recld 13007 . . . 4  |-  ( A  e.  dom arctan  ->  ( Re
`  A )  e.  RR )
5 leloe 9683 . . . 4  |-  ( ( 0  e.  RR  /\  ( Re `  A )  e.  RR )  -> 
( 0  <_  (
Re `  A )  <->  ( 0  <  ( Re
`  A )  \/  0  =  ( Re
`  A ) ) ) )
61, 4, 5sylancr 663 . . 3  |-  ( A  e.  dom arctan  ->  ( 0  <_  ( Re `  A )  <->  ( 0  <  ( Re `  A )  \/  0  =  ( Re `  A ) ) ) )
76biimpa 484 . 2  |-  ( ( A  e.  dom arctan  /\  0  <_  ( Re `  A
) )  ->  (
0  <  ( Re `  A )  \/  0  =  ( Re `  A ) ) )
8 ax-1cn 9562 . . . . . . . 8  |-  1  e.  CC
9 ax-icn 9563 . . . . . . . . 9  |-  _i  e.  CC
10 mulcl 9588 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
119, 3, 10sylancr 663 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( _i  x.  A )  e.  CC )
12 addcl 9586 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  +  ( _i  x.  A
) )  e.  CC )
138, 11, 12sylancr 663 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( 1  +  ( _i  x.  A ) )  e.  CC )
142simp3bi 1013 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( 1  +  ( _i  x.  A ) )  =/=  0 )
1513, 14logcld 22824 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( log `  ( 1  +  ( _i  x.  A ) ) )  e.  CC )
16 subcl 9831 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  -  ( _i  x.  A
) )  e.  CC )
178, 11, 16sylancr 663 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( 1  -  ( _i  x.  A ) )  e.  CC )
182simp2bi 1012 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( 1  -  ( _i  x.  A ) )  =/=  0 )
1917, 18logcld 22824 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( log `  ( 1  -  (
_i  x.  A )
) )  e.  CC )
2015, 19addcld 9627 . . . . 5  |-  ( A  e.  dom arctan  ->  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) )  e.  CC )
2120adantr 465 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e.  CC )
22 pire 22718 . . . . . . . 8  |-  pi  e.  RR
2322renegcli 9892 . . . . . . 7  |-  -u pi  e.  RR
2423a1i 11 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u pi  e.  RR )
2519adantr 465 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( 1  -  ( _i  x.  A
) ) )  e.  CC )
2625imcld 13008 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e.  RR )
2715adantr 465 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( 1  +  ( _i  x.  A
) ) )  e.  CC )
2827imcld 13008 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  e.  RR )
2928, 26readdcld 9635 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  ( Im `  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  e.  RR )
3017adantr 465 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
1  -  ( _i  x.  A ) )  e.  CC )
31 im1 12968 . . . . . . . . . . . . 13  |-  ( Im
`  1 )  =  0
3231oveq1i 6305 . . . . . . . . . . . 12  |-  ( ( Im `  1 )  -  ( Im `  ( _i  x.  A
) ) )  =  ( 0  -  (
Im `  ( _i  x.  A ) ) )
33 df-neg 9820 . . . . . . . . . . . 12  |-  -u (
Im `  ( _i  x.  A ) )  =  ( 0  -  (
Im `  ( _i  x.  A ) ) )
3432, 33eqtr4i 2499 . . . . . . . . . . 11  |-  ( ( Im `  1 )  -  ( Im `  ( _i  x.  A
) ) )  = 
-u ( Im `  ( _i  x.  A
) )
3511adantr 465 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
_i  x.  A )  e.  CC )
36 imsub 12948 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( Im `  ( 1  -  (
_i  x.  A )
) )  =  ( ( Im `  1
)  -  ( Im
`  ( _i  x.  A ) ) ) )
378, 35, 36sylancr 663 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( 1  -  ( _i  x.  A ) ) )  =  ( ( Im
`  1 )  -  ( Im `  ( _i  x.  A ) ) ) )
383adantr 465 . . . . . . . . . . . . 13  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  A  e.  CC )
39 reim 12922 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  (
Re `  A )  =  ( Im `  ( _i  x.  A
) ) )
4038, 39syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  A )  =  ( Im `  ( _i  x.  A
) ) )
4140negeqd 9826 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u (
Re `  A )  =  -u ( Im `  ( _i  x.  A
) ) )
4234, 37, 413eqtr4a 2534 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( 1  -  ( _i  x.  A ) ) )  =  -u ( Re `  A ) )
434lt0neg2d 10135 . . . . . . . . . . 11  |-  ( A  e.  dom arctan  ->  ( 0  <  ( Re `  A )  <->  -u ( Re
`  A )  <  0 ) )
4443biimpa 484 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u (
Re `  A )  <  0 )
4542, 44eqbrtrd 4473 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( 1  -  ( _i  x.  A ) ) )  <  0 )
46 argimlt0 22864 . . . . . . . . 9  |-  ( ( ( 1  -  (
_i  x.  A )
)  e.  CC  /\  ( Im `  ( 1  -  ( _i  x.  A ) ) )  <  0 )  -> 
( Im `  ( log `  ( 1  -  ( _i  x.  A
) ) ) )  e.  ( -u pi (,) 0 ) )
4730, 45, 46syl2anc 661 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e.  ( -u pi (,) 0 ) )
48 eliooord 11596 . . . . . . . 8  |-  ( ( Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e.  ( -u pi (,) 0 )  ->  ( -u pi  <  ( Im
`  ( log `  (
1  -  ( _i  x.  A ) ) ) )  /\  (
Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  <  0 ) )
4947, 48syl 16 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( -u pi  <  ( Im
`  ( log `  (
1  -  ( _i  x.  A ) ) ) )  /\  (
Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  <  0 ) )
5049simpld 459 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u pi  <  ( Im `  ( log `  ( 1  -  ( _i  x.  A
) ) ) ) )
5113adantr 465 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
1  +  ( _i  x.  A ) )  e.  CC )
52 simpr 461 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <  ( Re `  A
) )
53 imadd 12947 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( Im `  ( 1  +  ( _i  x.  A ) ) )  =  ( ( Im `  1
)  +  ( Im
`  ( _i  x.  A ) ) ) )
548, 35, 53sylancr 663 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( 1  +  ( _i  x.  A ) ) )  =  ( ( Im
`  1 )  +  ( Im `  (
_i  x.  A )
) ) )
5540oveq2d 6311 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  1
)  +  ( Re
`  A ) )  =  ( ( Im
`  1 )  +  ( Im `  (
_i  x.  A )
) ) )
5631oveq1i 6305 . . . . . . . . . . . . 13  |-  ( ( Im `  1 )  +  ( Re `  A ) )  =  ( 0  +  ( Re `  A ) )
5738recld 13007 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  A )  e.  RR )
5857recnd 9634 . . . . . . . . . . . . . 14  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  A )  e.  CC )
5958addid2d 9792 . . . . . . . . . . . . 13  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
0  +  ( Re
`  A ) )  =  ( Re `  A ) )
6056, 59syl5eq 2520 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  1
)  +  ( Re
`  A ) )  =  ( Re `  A ) )
6154, 55, 603eqtr2d 2514 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( 1  +  ( _i  x.  A ) ) )  =  ( Re `  A ) )
6252, 61breqtrrd 4479 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <  ( Im `  (
1  +  ( _i  x.  A ) ) ) )
63 argimgt0 22863 . . . . . . . . . 10  |-  ( ( ( 1  +  ( _i  x.  A ) )  e.  CC  /\  0  <  ( Im `  ( 1  +  ( _i  x.  A ) ) ) )  -> 
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  e.  ( 0 (,) pi ) )
6451, 62, 63syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  e.  ( 0 (,) pi ) )
65 eliooord 11596 . . . . . . . . 9  |-  ( ( Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  e.  ( 0 (,) pi )  ->  ( 0  < 
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  /\  ( Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  <  pi ) )
6664, 65syl 16 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
0  <  ( Im `  ( log `  (
1  +  ( _i  x.  A ) ) ) )  /\  (
Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  < 
pi ) )
6766simpld 459 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <  ( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) )
6828, 26ltaddpos2d 10149 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
0  <  ( Im `  ( log `  (
1  +  ( _i  x.  A ) ) ) )  <->  ( Im `  ( log `  (
1  -  ( _i  x.  A ) ) ) )  <  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  ( Im `  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) ) ) )
6967, 68mpbid 210 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  < 
( ( Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  +  ( Im
`  ( log `  (
1  -  ( _i  x.  A ) ) ) ) ) )
7024, 26, 29, 50, 69lttrd 9754 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u pi  <  ( ( Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  +  ( Im
`  ( log `  (
1  -  ( _i  x.  A ) ) ) ) ) )
7127, 25imaddd 13028 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) ) )  =  ( ( Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  +  ( Im
`  ( log `  (
1  -  ( _i  x.  A ) ) ) ) ) )
7270, 71breqtrrd 4479 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u pi  <  ( Im `  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) ) ) )
7322a1i 11 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  pi  e.  RR )
74 0red 9609 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  e.  RR )
7549simprd 463 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  <  0 )
7626, 74, 28, 75ltadd2dd 9752 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  ( Im `  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  <  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  0 ) )
7728recnd 9634 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  e.  CC )
7877addid1d 9791 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  0 )  =  ( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) )
7976, 78breqtrd 4477 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  ( Im `  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  <  (
Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )
8066simprd 463 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  < 
pi )
8129, 28, 73, 79, 80lttrd 9754 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  ( Im `  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  <  pi )
8229, 73, 81ltled 9744 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  ( Im `  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  <_  pi )
8371, 82eqbrtrd 4473 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) ) )  <_  pi )
84 ellogrn 22813 . . . 4  |-  ( ( ( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e. 
ran  log  <->  ( ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) )  e.  CC  /\  -u pi  <  ( Im
`  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  /\  (
Im `  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) ) )  <_  pi ) )
8521, 72, 83, 84syl3anbrc 1180 . . 3  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e. 
ran  log )
86 0red 9609 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
0  e.  RR )
8711adantr 465 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
( _i  x.  A
)  e.  CC )
88 simpr 461 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
0  =  ( Re
`  A ) )
893adantr 465 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  ->  A  e.  CC )
9089, 39syl 16 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
( Re `  A
)  =  ( Im
`  ( _i  x.  A ) ) )
9188, 90eqtr2d 2509 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
( Im `  (
_i  x.  A )
)  =  0 )
9287, 91reim0bd 13013 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
( _i  x.  A
)  e.  RR )
9315, 19addcomd 9793 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) )  =  ( ( log `  (
1  -  ( _i  x.  A ) ) )  +  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )
9493ad2antrr 725 . . . . 5  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) )  =  ( ( log `  (
1  -  ( _i  x.  A ) ) )  +  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )
95 logrncl 22821 . . . . . . . 8  |-  ( ( ( 1  -  (
_i  x.  A )
)  e.  CC  /\  ( 1  -  (
_i  x.  A )
)  =/=  0 )  ->  ( log `  (
1  -  ( _i  x.  A ) ) )  e.  ran  log )
9617, 18, 95syl2anc 661 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( log `  ( 1  -  (
_i  x.  A )
) )  e.  ran  log )
9796ad2antrr 725 . . . . . 6  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( log `  ( 1  -  (
_i  x.  A )
) )  e.  ran  log )
98 1re 9607 . . . . . . . . 9  |-  1  e.  RR
9992adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( _i  x.  A )  e.  RR )
100 readdcl 9587 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  ( 1  +  ( _i  x.  A
) )  e.  RR )
10198, 99, 100sylancr 663 . . . . . . . 8  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( 1  +  ( _i  x.  A ) )  e.  RR )
102 0red 9609 . . . . . . . . 9  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  0  e.  RR )
103 1red 9623 . . . . . . . . 9  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  1  e.  RR )
104 0lt1 10087 . . . . . . . . . 10  |-  0  <  1
105104a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  0  <  1 )
106 addge01 10074 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  ( 0  <_ 
( _i  x.  A
)  <->  1  <_  (
1  +  ( _i  x.  A ) ) ) )
10798, 92, 106sylancr 663 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
( 0  <_  (
_i  x.  A )  <->  1  <_  ( 1  +  ( _i  x.  A
) ) ) )
108107biimpa 484 . . . . . . . . 9  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  1  <_  ( 1  +  ( _i  x.  A ) ) )
109102, 103, 101, 105, 108ltletrd 9753 . . . . . . . 8  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  0  <  ( 1  +  ( _i  x.  A ) ) )
110101, 109elrpd 11266 . . . . . . 7  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( 1  +  ( _i  x.  A ) )  e.  RR+ )
111110relogcld 22874 . . . . . 6  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( log `  ( 1  +  ( _i  x.  A ) ) )  e.  RR )
112 logrnaddcl 22828 . . . . . 6  |-  ( ( ( log `  (
1  -  ( _i  x.  A ) ) )  e.  ran  log  /\  ( log `  (
1  +  ( _i  x.  A ) ) )  e.  RR )  ->  ( ( log `  ( 1  -  (
_i  x.  A )
) )  +  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  e.  ran  log )
11397, 111, 112syl2anc 661 . . . . 5  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( ( log `  ( 1  -  ( _i  x.  A
) ) )  +  ( log `  (
1  +  ( _i  x.  A ) ) ) )  e.  ran  log )
11494, 113eqeltrd 2555 . . . 4  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) )  e.  ran  log )
115 logrncl 22821 . . . . . . 7  |-  ( ( ( 1  +  ( _i  x.  A ) )  e.  CC  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 )  ->  ( log `  (
1  +  ( _i  x.  A ) ) )  e.  ran  log )
11613, 14, 115syl2anc 661 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( log `  ( 1  +  ( _i  x.  A ) ) )  e.  ran  log )
117116ad2antrr 725 . . . . 5  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  ( log `  ( 1  +  ( _i  x.  A ) ) )  e.  ran  log )
11892adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  ( _i  x.  A )  e.  RR )
119 resubcl 9895 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  ( 1  -  ( _i  x.  A
) )  e.  RR )
12098, 118, 119sylancr 663 . . . . . . 7  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  ( 1  -  ( _i  x.  A ) )  e.  RR )
121 0red 9609 . . . . . . . 8  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  0  e.  RR )
122 1red 9623 . . . . . . . 8  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  1  e.  RR )
123104a1i 11 . . . . . . . 8  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  0  <  1 )
124 1m0e1 10658 . . . . . . . . 9  |-  ( 1  -  0 )  =  1
125 1red 9623 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
1  e.  RR )
12692, 86, 125lesub2d 10172 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
( ( _i  x.  A )  <_  0  <->  ( 1  -  0 )  <_  ( 1  -  ( _i  x.  A
) ) ) )
127126biimpa 484 . . . . . . . . 9  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  ( 1  -  0 )  <_ 
( 1  -  (
_i  x.  A )
) )
128124, 127syl5eqbrr 4487 . . . . . . . 8  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  1  <_  ( 1  -  ( _i  x.  A ) ) )
129121, 122, 120, 123, 128ltletrd 9753 . . . . . . 7  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  0  <  ( 1  -  ( _i  x.  A ) ) )
130120, 129elrpd 11266 . . . . . 6  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  ( 1  -  ( _i  x.  A ) )  e.  RR+ )
131130relogcld 22874 . . . . 5  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  ( log `  ( 1  -  (
_i  x.  A )
) )  e.  RR )
132 logrnaddcl 22828 . . . . 5  |-  ( ( ( log `  (
1  +  ( _i  x.  A ) ) )  e.  ran  log  /\  ( log `  (
1  -  ( _i  x.  A ) ) )  e.  RR )  ->  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  ( _i  x.  A ) ) ) )  e.  ran  log )
133117, 131, 132syl2anc 661 . . . 4  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) )  e.  ran  log )
13486, 92, 114, 133lecasei 9702 . . 3  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
( ( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e. 
ran  log )
13585, 134jaodan 783 . 2  |-  ( ( A  e.  dom arctan  /\  (
0  <  ( Re `  A )  \/  0  =  ( Re `  A ) ) )  ->  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  ( _i  x.  A ) ) ) )  e.  ran  log )
1367, 135syldan 470 1  |-  ( ( A  e.  dom arctan  /\  0  <_  ( Re `  A
) )  ->  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e. 
ran  log )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4453   dom cdm 5005   ran crn 5006   ` cfv 5594  (class class class)co 6295   CCcc 9502   RRcr 9503   0cc0 9504   1c1 9505   _ici 9506    + caddc 9507    x. cmul 9509    < clt 9640    <_ cle 9641    - cmin 9817   -ucneg 9818   (,)cioo 11541   Recre 12910   Imcim 12911   picpi 13681   logclog 22808  arctancatan 23061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582  ax-addf 9583  ax-mulf 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-om 6696  df-1st 6795  df-2nd 6796  df-supp 6914  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-map 7434  df-pm 7435  df-ixp 7482  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-fsupp 7842  df-fi 7883  df-sup 7913  df-oi 7947  df-card 8332  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-ioo 11545  df-ioc 11546  df-ico 11547  df-icc 11548  df-fz 11685  df-fzo 11805  df-fl 11909  df-mod 11977  df-seq 12088  df-exp 12147  df-fac 12334  df-bc 12361  df-hash 12386  df-shft 12880  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-limsup 13274  df-clim 13291  df-rlim 13292  df-sum 13489  df-ef 13682  df-sin 13684  df-cos 13685  df-pi 13687  df-struct 14509  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-mulr 14586  df-starv 14587  df-sca 14588  df-vsca 14589  df-ip 14590  df-tset 14591  df-ple 14592  df-ds 14594  df-unif 14595  df-hom 14596  df-cco 14597  df-rest 14695  df-topn 14696  df-0g 14714  df-gsum 14715  df-topgen 14716  df-pt 14717  df-prds 14720  df-xrs 14774  df-qtop 14779  df-imas 14780  df-xps 14782  df-mre 14858  df-mrc 14859  df-acs 14861  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15840  df-mulg 15932  df-cntz 16227  df-cmn 16673  df-psmet 18281  df-xmet 18282  df-met 18283  df-bl 18284  df-mopn 18285  df-fbas 18286  df-fg 18287  df-cnfld 18291  df-top 19268  df-bases 19270  df-topon 19271  df-topsp 19272  df-cld 19388  df-ntr 19389  df-cls 19390  df-nei 19467  df-lp 19505  df-perf 19506  df-cn 19596  df-cnp 19597  df-haus 19684  df-tx 19931  df-hmeo 20124  df-fil 20215  df-fm 20307  df-flim 20308  df-flf 20309  df-xms 20691  df-ms 20692  df-tms 20693  df-cncf 21250  df-limc 22138  df-dv 22139  df-log 22810  df-atan 23064
This theorem is referenced by:  atanlogadd  23111
  Copyright terms: Public domain W3C validator