MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanlogaddlem Structured version   Unicode version

Theorem atanlogaddlem 22451
Description: Lemma for atanlogadd 22452. (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
atanlogaddlem  |-  ( ( A  e.  dom arctan  /\  0  <_  ( Re `  A
) )  ->  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e. 
ran  log )

Proof of Theorem atanlogaddlem
StepHypRef Expression
1 0re 9501 . . . 4  |-  0  e.  RR
2 atandm2 22415 . . . . . 6  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  ( 1  -  ( _i  x.  A ) )  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 ) )
32simp1bi 1003 . . . . 5  |-  ( A  e.  dom arctan  ->  A  e.  CC )
43recld 12805 . . . 4  |-  ( A  e.  dom arctan  ->  ( Re
`  A )  e.  RR )
5 leloe 9576 . . . 4  |-  ( ( 0  e.  RR  /\  ( Re `  A )  e.  RR )  -> 
( 0  <_  (
Re `  A )  <->  ( 0  <  ( Re
`  A )  \/  0  =  ( Re
`  A ) ) ) )
61, 4, 5sylancr 663 . . 3  |-  ( A  e.  dom arctan  ->  ( 0  <_  ( Re `  A )  <->  ( 0  <  ( Re `  A )  \/  0  =  ( Re `  A ) ) ) )
76biimpa 484 . 2  |-  ( ( A  e.  dom arctan  /\  0  <_  ( Re `  A
) )  ->  (
0  <  ( Re `  A )  \/  0  =  ( Re `  A ) ) )
8 ax-1cn 9455 . . . . . . . 8  |-  1  e.  CC
9 ax-icn 9456 . . . . . . . . 9  |-  _i  e.  CC
10 mulcl 9481 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
119, 3, 10sylancr 663 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( _i  x.  A )  e.  CC )
12 addcl 9479 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  +  ( _i  x.  A
) )  e.  CC )
138, 11, 12sylancr 663 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( 1  +  ( _i  x.  A ) )  e.  CC )
142simp3bi 1005 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( 1  +  ( _i  x.  A ) )  =/=  0 )
1513, 14logcld 22165 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( log `  ( 1  +  ( _i  x.  A ) ) )  e.  CC )
16 subcl 9724 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  -  ( _i  x.  A
) )  e.  CC )
178, 11, 16sylancr 663 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( 1  -  ( _i  x.  A ) )  e.  CC )
182simp2bi 1004 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( 1  -  ( _i  x.  A ) )  =/=  0 )
1917, 18logcld 22165 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( log `  ( 1  -  (
_i  x.  A )
) )  e.  CC )
2015, 19addcld 9520 . . . . 5  |-  ( A  e.  dom arctan  ->  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) )  e.  CC )
2120adantr 465 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e.  CC )
22 pire 22064 . . . . . . . 8  |-  pi  e.  RR
2322renegcli 9785 . . . . . . 7  |-  -u pi  e.  RR
2423a1i 11 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u pi  e.  RR )
2519adantr 465 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( 1  -  ( _i  x.  A
) ) )  e.  CC )
2625imcld 12806 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e.  RR )
2715adantr 465 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( 1  +  ( _i  x.  A
) ) )  e.  CC )
2827imcld 12806 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  e.  RR )
2928, 26readdcld 9528 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  ( Im `  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  e.  RR )
3017adantr 465 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
1  -  ( _i  x.  A ) )  e.  CC )
31 im1 12766 . . . . . . . . . . . . 13  |-  ( Im
`  1 )  =  0
3231oveq1i 6213 . . . . . . . . . . . 12  |-  ( ( Im `  1 )  -  ( Im `  ( _i  x.  A
) ) )  =  ( 0  -  (
Im `  ( _i  x.  A ) ) )
33 df-neg 9713 . . . . . . . . . . . 12  |-  -u (
Im `  ( _i  x.  A ) )  =  ( 0  -  (
Im `  ( _i  x.  A ) ) )
3432, 33eqtr4i 2486 . . . . . . . . . . 11  |-  ( ( Im `  1 )  -  ( Im `  ( _i  x.  A
) ) )  = 
-u ( Im `  ( _i  x.  A
) )
3511adantr 465 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
_i  x.  A )  e.  CC )
36 imsub 12746 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( Im `  ( 1  -  (
_i  x.  A )
) )  =  ( ( Im `  1
)  -  ( Im
`  ( _i  x.  A ) ) ) )
378, 35, 36sylancr 663 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( 1  -  ( _i  x.  A ) ) )  =  ( ( Im
`  1 )  -  ( Im `  ( _i  x.  A ) ) ) )
383adantr 465 . . . . . . . . . . . . 13  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  A  e.  CC )
39 reim 12720 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  (
Re `  A )  =  ( Im `  ( _i  x.  A
) ) )
4038, 39syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  A )  =  ( Im `  ( _i  x.  A
) ) )
4140negeqd 9719 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u (
Re `  A )  =  -u ( Im `  ( _i  x.  A
) ) )
4234, 37, 413eqtr4a 2521 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( 1  -  ( _i  x.  A ) ) )  =  -u ( Re `  A ) )
434lt0neg2d 10025 . . . . . . . . . . 11  |-  ( A  e.  dom arctan  ->  ( 0  <  ( Re `  A )  <->  -u ( Re
`  A )  <  0 ) )
4443biimpa 484 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u (
Re `  A )  <  0 )
4542, 44eqbrtrd 4423 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( 1  -  ( _i  x.  A ) ) )  <  0 )
46 argimlt0 22205 . . . . . . . . 9  |-  ( ( ( 1  -  (
_i  x.  A )
)  e.  CC  /\  ( Im `  ( 1  -  ( _i  x.  A ) ) )  <  0 )  -> 
( Im `  ( log `  ( 1  -  ( _i  x.  A
) ) ) )  e.  ( -u pi (,) 0 ) )
4730, 45, 46syl2anc 661 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e.  ( -u pi (,) 0 ) )
48 eliooord 11470 . . . . . . . 8  |-  ( ( Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e.  ( -u pi (,) 0 )  ->  ( -u pi  <  ( Im
`  ( log `  (
1  -  ( _i  x.  A ) ) ) )  /\  (
Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  <  0 ) )
4947, 48syl 16 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( -u pi  <  ( Im
`  ( log `  (
1  -  ( _i  x.  A ) ) ) )  /\  (
Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  <  0 ) )
5049simpld 459 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u pi  <  ( Im `  ( log `  ( 1  -  ( _i  x.  A
) ) ) ) )
5113adantr 465 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
1  +  ( _i  x.  A ) )  e.  CC )
52 simpr 461 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <  ( Re `  A
) )
53 imadd 12745 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( Im `  ( 1  +  ( _i  x.  A ) ) )  =  ( ( Im `  1
)  +  ( Im
`  ( _i  x.  A ) ) ) )
548, 35, 53sylancr 663 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( 1  +  ( _i  x.  A ) ) )  =  ( ( Im
`  1 )  +  ( Im `  (
_i  x.  A )
) ) )
5540oveq2d 6219 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  1
)  +  ( Re
`  A ) )  =  ( ( Im
`  1 )  +  ( Im `  (
_i  x.  A )
) ) )
5631oveq1i 6213 . . . . . . . . . . . . 13  |-  ( ( Im `  1 )  +  ( Re `  A ) )  =  ( 0  +  ( Re `  A ) )
5738recld 12805 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  A )  e.  RR )
5857recnd 9527 . . . . . . . . . . . . . 14  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  A )  e.  CC )
5958addid2d 9685 . . . . . . . . . . . . 13  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
0  +  ( Re
`  A ) )  =  ( Re `  A ) )
6056, 59syl5eq 2507 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  1
)  +  ( Re
`  A ) )  =  ( Re `  A ) )
6154, 55, 603eqtr2d 2501 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( 1  +  ( _i  x.  A ) ) )  =  ( Re `  A ) )
6252, 61breqtrrd 4429 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <  ( Im `  (
1  +  ( _i  x.  A ) ) ) )
63 argimgt0 22204 . . . . . . . . . 10  |-  ( ( ( 1  +  ( _i  x.  A ) )  e.  CC  /\  0  <  ( Im `  ( 1  +  ( _i  x.  A ) ) ) )  -> 
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  e.  ( 0 (,) pi ) )
6451, 62, 63syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  e.  ( 0 (,) pi ) )
65 eliooord 11470 . . . . . . . . 9  |-  ( ( Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  e.  ( 0 (,) pi )  ->  ( 0  < 
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  /\  ( Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  <  pi ) )
6664, 65syl 16 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
0  <  ( Im `  ( log `  (
1  +  ( _i  x.  A ) ) ) )  /\  (
Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  < 
pi ) )
6766simpld 459 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <  ( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) )
6828, 26ltaddpos2d 10039 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
0  <  ( Im `  ( log `  (
1  +  ( _i  x.  A ) ) ) )  <->  ( Im `  ( log `  (
1  -  ( _i  x.  A ) ) ) )  <  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  ( Im `  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) ) ) )
6967, 68mpbid 210 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  < 
( ( Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  +  ( Im
`  ( log `  (
1  -  ( _i  x.  A ) ) ) ) ) )
7024, 26, 29, 50, 69lttrd 9647 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u pi  <  ( ( Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  +  ( Im
`  ( log `  (
1  -  ( _i  x.  A ) ) ) ) ) )
7127, 25imaddd 12826 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) ) )  =  ( ( Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  +  ( Im
`  ( log `  (
1  -  ( _i  x.  A ) ) ) ) ) )
7270, 71breqtrrd 4429 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u pi  <  ( Im `  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) ) ) )
7322a1i 11 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  pi  e.  RR )
74 0red 9502 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  e.  RR )
7549simprd 463 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  <  0 )
7626, 74, 28, 75ltadd2dd 9645 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  ( Im `  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  <  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  0 ) )
7728recnd 9527 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  e.  CC )
7877addid1d 9684 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  0 )  =  ( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) )
7976, 78breqtrd 4427 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  ( Im `  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  <  (
Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )
8066simprd 463 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  < 
pi )
8129, 28, 73, 79, 80lttrd 9647 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  ( Im `  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  <  pi )
8229, 73, 81ltled 9637 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  ( Im `  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  <_  pi )
8371, 82eqbrtrd 4423 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) ) )  <_  pi )
84 ellogrn 22154 . . . 4  |-  ( ( ( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e. 
ran  log  <->  ( ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) )  e.  CC  /\  -u pi  <  ( Im
`  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  /\  (
Im `  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) ) )  <_  pi ) )
8521, 72, 83, 84syl3anbrc 1172 . . 3  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e. 
ran  log )
86 0red 9502 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
0  e.  RR )
8711adantr 465 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
( _i  x.  A
)  e.  CC )
88 simpr 461 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
0  =  ( Re
`  A ) )
893adantr 465 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  ->  A  e.  CC )
9089, 39syl 16 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
( Re `  A
)  =  ( Im
`  ( _i  x.  A ) ) )
9188, 90eqtr2d 2496 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
( Im `  (
_i  x.  A )
)  =  0 )
9287, 91reim0bd 12811 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
( _i  x.  A
)  e.  RR )
9315, 19addcomd 9686 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) )  =  ( ( log `  (
1  -  ( _i  x.  A ) ) )  +  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )
9493ad2antrr 725 . . . . 5  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) )  =  ( ( log `  (
1  -  ( _i  x.  A ) ) )  +  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )
95 logrncl 22162 . . . . . . . 8  |-  ( ( ( 1  -  (
_i  x.  A )
)  e.  CC  /\  ( 1  -  (
_i  x.  A )
)  =/=  0 )  ->  ( log `  (
1  -  ( _i  x.  A ) ) )  e.  ran  log )
9617, 18, 95syl2anc 661 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( log `  ( 1  -  (
_i  x.  A )
) )  e.  ran  log )
9796ad2antrr 725 . . . . . 6  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( log `  ( 1  -  (
_i  x.  A )
) )  e.  ran  log )
98 1re 9500 . . . . . . . . 9  |-  1  e.  RR
9992adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( _i  x.  A )  e.  RR )
100 readdcl 9480 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  ( 1  +  ( _i  x.  A
) )  e.  RR )
10198, 99, 100sylancr 663 . . . . . . . 8  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( 1  +  ( _i  x.  A ) )  e.  RR )
102 0red 9502 . . . . . . . . 9  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  0  e.  RR )
103 1red 9516 . . . . . . . . 9  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  1  e.  RR )
104 0lt1 9977 . . . . . . . . . 10  |-  0  <  1
105104a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  0  <  1 )
106 addge01 9964 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  ( 0  <_ 
( _i  x.  A
)  <->  1  <_  (
1  +  ( _i  x.  A ) ) ) )
10798, 92, 106sylancr 663 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
( 0  <_  (
_i  x.  A )  <->  1  <_  ( 1  +  ( _i  x.  A
) ) ) )
108107biimpa 484 . . . . . . . . 9  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  1  <_  ( 1  +  ( _i  x.  A ) ) )
109102, 103, 101, 105, 108ltletrd 9646 . . . . . . . 8  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  0  <  ( 1  +  ( _i  x.  A ) ) )
110101, 109elrpd 11140 . . . . . . 7  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( 1  +  ( _i  x.  A ) )  e.  RR+ )
111110relogcld 22215 . . . . . 6  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( log `  ( 1  +  ( _i  x.  A ) ) )  e.  RR )
112 logrnaddcl 22169 . . . . . 6  |-  ( ( ( log `  (
1  -  ( _i  x.  A ) ) )  e.  ran  log  /\  ( log `  (
1  +  ( _i  x.  A ) ) )  e.  RR )  ->  ( ( log `  ( 1  -  (
_i  x.  A )
) )  +  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  e.  ran  log )
11397, 111, 112syl2anc 661 . . . . 5  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( ( log `  ( 1  -  ( _i  x.  A
) ) )  +  ( log `  (
1  +  ( _i  x.  A ) ) ) )  e.  ran  log )
11494, 113eqeltrd 2542 . . . 4  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) )  e.  ran  log )
115 logrncl 22162 . . . . . . 7  |-  ( ( ( 1  +  ( _i  x.  A ) )  e.  CC  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 )  ->  ( log `  (
1  +  ( _i  x.  A ) ) )  e.  ran  log )
11613, 14, 115syl2anc 661 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( log `  ( 1  +  ( _i  x.  A ) ) )  e.  ran  log )
117116ad2antrr 725 . . . . 5  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  ( log `  ( 1  +  ( _i  x.  A ) ) )  e.  ran  log )
11892adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  ( _i  x.  A )  e.  RR )
119 resubcl 9788 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  ( 1  -  ( _i  x.  A
) )  e.  RR )
12098, 118, 119sylancr 663 . . . . . . 7  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  ( 1  -  ( _i  x.  A ) )  e.  RR )
121 0red 9502 . . . . . . . 8  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  0  e.  RR )
122 1red 9516 . . . . . . . 8  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  1  e.  RR )
123104a1i 11 . . . . . . . 8  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  0  <  1 )
124 1m0e1 10547 . . . . . . . . 9  |-  ( 1  -  0 )  =  1
125 1red 9516 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
1  e.  RR )
12692, 86, 125lesub2d 10062 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
( ( _i  x.  A )  <_  0  <->  ( 1  -  0 )  <_  ( 1  -  ( _i  x.  A
) ) ) )
127126biimpa 484 . . . . . . . . 9  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  ( 1  -  0 )  <_ 
( 1  -  (
_i  x.  A )
) )
128124, 127syl5eqbrr 4437 . . . . . . . 8  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  1  <_  ( 1  -  ( _i  x.  A ) ) )
129121, 122, 120, 123, 128ltletrd 9646 . . . . . . 7  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  0  <  ( 1  -  ( _i  x.  A ) ) )
130120, 129elrpd 11140 . . . . . 6  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  ( 1  -  ( _i  x.  A ) )  e.  RR+ )
131130relogcld 22215 . . . . 5  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  ( log `  ( 1  -  (
_i  x.  A )
) )  e.  RR )
132 logrnaddcl 22169 . . . . 5  |-  ( ( ( log `  (
1  +  ( _i  x.  A ) ) )  e.  ran  log  /\  ( log `  (
1  -  ( _i  x.  A ) ) )  e.  RR )  ->  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  ( _i  x.  A ) ) ) )  e.  ran  log )
133117, 131, 132syl2anc 661 . . . 4  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) )  e.  ran  log )
13486, 92, 114, 133lecasei 9595 . . 3  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
( ( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e. 
ran  log )
13585, 134jaodan 783 . 2  |-  ( ( A  e.  dom arctan  /\  (
0  <  ( Re `  A )  \/  0  =  ( Re `  A ) ) )  ->  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  ( _i  x.  A ) ) ) )  e.  ran  log )
1367, 135syldan 470 1  |-  ( ( A  e.  dom arctan  /\  0  <_  ( Re `  A
) )  ->  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e. 
ran  log )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2648   class class class wbr 4403   dom cdm 4951   ran crn 4952   ` cfv 5529  (class class class)co 6203   CCcc 9395   RRcr 9396   0cc0 9397   1c1 9398   _ici 9399    + caddc 9400    x. cmul 9402    < clt 9533    <_ cle 9534    - cmin 9710   -ucneg 9711   (,)cioo 11415   Recre 12708   Imcim 12709   picpi 13474   logclog 22149  arctancatan 22402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-inf2 7962  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474  ax-pre-sup 9475  ax-addf 9476  ax-mulf 9477
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-se 4791  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-isom 5538  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-of 6433  df-om 6590  df-1st 6690  df-2nd 6691  df-supp 6804  df-recs 6945  df-rdg 6979  df-1o 7033  df-2o 7034  df-oadd 7037  df-er 7214  df-map 7329  df-pm 7330  df-ixp 7377  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-fsupp 7735  df-fi 7776  df-sup 7806  df-oi 7839  df-card 8224  df-cda 8452  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-div 10109  df-nn 10438  df-2 10495  df-3 10496  df-4 10497  df-5 10498  df-6 10499  df-7 10500  df-8 10501  df-9 10502  df-10 10503  df-n0 10695  df-z 10762  df-dec 10871  df-uz 10977  df-q 11069  df-rp 11107  df-xneg 11204  df-xadd 11205  df-xmul 11206  df-ioo 11419  df-ioc 11420  df-ico 11421  df-icc 11422  df-fz 11559  df-fzo 11670  df-fl 11763  df-mod 11830  df-seq 11928  df-exp 11987  df-fac 12173  df-bc 12200  df-hash 12225  df-shft 12678  df-cj 12710  df-re 12711  df-im 12712  df-sqr 12846  df-abs 12847  df-limsup 13071  df-clim 13088  df-rlim 13089  df-sum 13286  df-ef 13475  df-sin 13477  df-cos 13478  df-pi 13480  df-struct 14298  df-ndx 14299  df-slot 14300  df-base 14301  df-sets 14302  df-ress 14303  df-plusg 14374  df-mulr 14375  df-starv 14376  df-sca 14377  df-vsca 14378  df-ip 14379  df-tset 14380  df-ple 14381  df-ds 14383  df-unif 14384  df-hom 14385  df-cco 14386  df-rest 14484  df-topn 14485  df-0g 14503  df-gsum 14504  df-topgen 14505  df-pt 14506  df-prds 14509  df-xrs 14563  df-qtop 14568  df-imas 14569  df-xps 14571  df-mre 14647  df-mrc 14648  df-acs 14650  df-mnd 15538  df-submnd 15588  df-mulg 15671  df-cntz 15958  df-cmn 16404  df-psmet 17944  df-xmet 17945  df-met 17946  df-bl 17947  df-mopn 17948  df-fbas 17949  df-fg 17950  df-cnfld 17954  df-top 18645  df-bases 18647  df-topon 18648  df-topsp 18649  df-cld 18765  df-ntr 18766  df-cls 18767  df-nei 18844  df-lp 18882  df-perf 18883  df-cn 18973  df-cnp 18974  df-haus 19061  df-tx 19277  df-hmeo 19470  df-fil 19561  df-fm 19653  df-flim 19654  df-flf 19655  df-xms 20037  df-ms 20038  df-tms 20039  df-cncf 20596  df-limc 21484  df-dv 21485  df-log 22151  df-atan 22405
This theorem is referenced by:  atanlogadd  22452
  Copyright terms: Public domain W3C validator