MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atandm Structured version   Unicode version

Theorem atandm 23071
Description: Since the property is a little lengthy, we abbreviate  A  e.  CC  /\  A  =/=  -u _i  /\  A  =/=  _i as  A  e.  dom arctan. This is the necessary precondition for the definition of arctan to make sense. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atandm  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  A  =/=  -u _i  /\  A  =/= 
_i ) )

Proof of Theorem atandm
StepHypRef Expression
1 eldif 3491 . . 3  |-  ( A  e.  ( CC  \  { -u _i ,  _i } )  <->  ( A  e.  CC  /\  -.  A  e.  { -u _i ,  _i } ) )
2 elprg 4049 . . . . . 6  |-  ( A  e.  CC  ->  ( A  e.  { -u _i ,  _i }  <->  ( A  =  -u _i  \/  A  =  _i ) ) )
32notbid 294 . . . . 5  |-  ( A  e.  CC  ->  ( -.  A  e.  { -u _i ,  _i }  <->  -.  ( A  =  -u _i  \/  A  =  _i ) ) )
4 neanior 2792 . . . . 5  |-  ( ( A  =/=  -u _i  /\  A  =/=  _i ) 
<->  -.  ( A  = 
-u _i  \/  A  =  _i ) )
53, 4syl6bbr 263 . . . 4  |-  ( A  e.  CC  ->  ( -.  A  e.  { -u _i ,  _i }  <->  ( A  =/=  -u _i  /\  A  =/=  _i ) ) )
65pm5.32i 637 . . 3  |-  ( ( A  e.  CC  /\  -.  A  e.  { -u _i ,  _i }
)  <->  ( A  e.  CC  /\  ( A  =/=  -u _i  /\  A  =/=  _i ) ) )
71, 6bitri 249 . 2  |-  ( A  e.  ( CC  \  { -u _i ,  _i } )  <->  ( A  e.  CC  /\  ( A  =/=  -u _i  /\  A  =/=  _i ) ) )
8 ovex 6320 . . . 4  |-  ( ( _i  /  2 )  x.  ( ( log `  ( 1  -  (
_i  x.  x )
) )  -  ( log `  ( 1  +  ( _i  x.  x
) ) ) ) )  e.  _V
9 df-atan 23062 . . . 4  |- arctan  =  ( x  e.  ( CC 
\  { -u _i ,  _i } )  |->  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  x ) ) )  -  ( log `  (
1  +  ( _i  x.  x ) ) ) ) ) )
108, 9dmmpti 5716 . . 3  |-  dom arctan  =  ( CC  \  { -u _i ,  _i }
)
1110eleq2i 2545 . 2  |-  ( A  e.  dom arctan  <->  A  e.  ( CC  \  { -u _i ,  _i } ) )
12 3anass 977 . 2  |-  ( ( A  e.  CC  /\  A  =/=  -u _i  /\  A  =/=  _i )  <->  ( A  e.  CC  /\  ( A  =/=  -u _i  /\  A  =/=  _i ) ) )
137, 11, 123bitr4i 277 1  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  A  =/=  -u _i  /\  A  =/= 
_i ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662    \ cdif 3478   {cpr 4035   dom cdm 5005   ` cfv 5594  (class class class)co 6295   CCcc 9502   1c1 9505   _ici 9506    + caddc 9507    x. cmul 9509    - cmin 9817   -ucneg 9818    / cdiv 10218   2c2 10597   logclog 22806  arctancatan 23059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-iota 5557  df-fun 5596  df-fn 5597  df-fv 5602  df-ov 6298  df-atan 23062
This theorem is referenced by:  atandm2  23072  atandm3  23073  atancj  23105  2efiatan  23113  tanatan  23114  dvatan  23130
  Copyright terms: Public domain W3C validator