MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atandm Structured version   Unicode version

Theorem atandm 22230
Description: Since the property is a little lengthy, we abbreviate  A  e.  CC  /\  A  =/=  -u _i  /\  A  =/=  _i as  A  e.  dom arctan. This is the necessary precondition for the definition of arctan to make sense. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atandm  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  A  =/=  -u _i  /\  A  =/= 
_i ) )

Proof of Theorem atandm
StepHypRef Expression
1 eldif 3335 . . 3  |-  ( A  e.  ( CC  \  { -u _i ,  _i } )  <->  ( A  e.  CC  /\  -.  A  e.  { -u _i ,  _i } ) )
2 elprg 3890 . . . . . 6  |-  ( A  e.  CC  ->  ( A  e.  { -u _i ,  _i }  <->  ( A  =  -u _i  \/  A  =  _i ) ) )
32notbid 294 . . . . 5  |-  ( A  e.  CC  ->  ( -.  A  e.  { -u _i ,  _i }  <->  -.  ( A  =  -u _i  \/  A  =  _i ) ) )
4 neanior 2695 . . . . 5  |-  ( ( A  =/=  -u _i  /\  A  =/=  _i ) 
<->  -.  ( A  = 
-u _i  \/  A  =  _i ) )
53, 4syl6bbr 263 . . . 4  |-  ( A  e.  CC  ->  ( -.  A  e.  { -u _i ,  _i }  <->  ( A  =/=  -u _i  /\  A  =/=  _i ) ) )
65pm5.32i 632 . . 3  |-  ( ( A  e.  CC  /\  -.  A  e.  { -u _i ,  _i }
)  <->  ( A  e.  CC  /\  ( A  =/=  -u _i  /\  A  =/=  _i ) ) )
71, 6bitri 249 . 2  |-  ( A  e.  ( CC  \  { -u _i ,  _i } )  <->  ( A  e.  CC  /\  ( A  =/=  -u _i  /\  A  =/=  _i ) ) )
8 ovex 6115 . . . 4  |-  ( ( _i  /  2 )  x.  ( ( log `  ( 1  -  (
_i  x.  x )
) )  -  ( log `  ( 1  +  ( _i  x.  x
) ) ) ) )  e.  _V
9 df-atan 22221 . . . 4  |- arctan  =  ( x  e.  ( CC 
\  { -u _i ,  _i } )  |->  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  x ) ) )  -  ( log `  (
1  +  ( _i  x.  x ) ) ) ) ) )
108, 9dmmpti 5537 . . 3  |-  dom arctan  =  ( CC  \  { -u _i ,  _i }
)
1110eleq2i 2505 . 2  |-  ( A  e.  dom arctan  <->  A  e.  ( CC  \  { -u _i ,  _i } ) )
12 3anass 964 . 2  |-  ( ( A  e.  CC  /\  A  =/=  -u _i  /\  A  =/=  _i )  <->  ( A  e.  CC  /\  ( A  =/=  -u _i  /\  A  =/=  _i ) ) )
137, 11, 123bitr4i 277 1  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  A  =/=  -u _i  /\  A  =/= 
_i ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604    \ cdif 3322   {cpr 3876   dom cdm 4836   ` cfv 5415  (class class class)co 6090   CCcc 9276   1c1 9279   _ici 9280    + caddc 9281    x. cmul 9283    - cmin 9591   -ucneg 9592    / cdiv 9989   2c2 10367   logclog 21965  arctancatan 22218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pr 4528
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-iota 5378  df-fun 5417  df-fn 5418  df-fv 5423  df-ov 6093  df-atan 22221
This theorem is referenced by:  atandm2  22231  atandm3  22232  atancj  22264  2efiatan  22272  tanatan  22273  dvatan  22289
  Copyright terms: Public domain W3C validator