MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atancj Unicode version

Theorem atancj 20703
Description: The arctangent function distributes under conjugation. (The condition that  Re ( A )  =/=  0 is necessary because the branch cuts are chosen so that the negative imaginary line "agrees with" neighboring values with negative real part, while the positive imaginary line agrees with values with positive real part. This makes atanneg 20700 true unconditionally but messes up conjugation symmetry, and it is impossible to have both in a single-valued function. The claim is true on the imaginary line between  -u 1 and  1, though.) (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atancj  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( A  e.  dom arctan  /\  ( * `  (arctan `  A ) )  =  (arctan `  ( * `  A ) ) ) )

Proof of Theorem atancj
StepHypRef Expression
1 simpl 444 . . 3  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  ->  A  e.  CC )
2 simpr 448 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( Re `  A
)  =/=  0 )
3 fveq2 5687 . . . . . 6  |-  ( A  =  -u _i  ->  (
Re `  A )  =  ( Re `  -u _i ) )
4 ax-icn 9005 . . . . . . . 8  |-  _i  e.  CC
54renegi 11940 . . . . . . 7  |-  ( Re
`  -u _i )  = 
-u ( Re `  _i )
6 rei 11916 . . . . . . . 8  |-  ( Re
`  _i )  =  0
76negeqi 9255 . . . . . . 7  |-  -u (
Re `  _i )  =  -u 0
8 neg0 9303 . . . . . . 7  |-  -u 0  =  0
95, 7, 83eqtri 2428 . . . . . 6  |-  ( Re
`  -u _i )  =  0
103, 9syl6eq 2452 . . . . 5  |-  ( A  =  -u _i  ->  (
Re `  A )  =  0 )
1110necon3i 2606 . . . 4  |-  ( ( Re `  A )  =/=  0  ->  A  =/=  -u _i )
122, 11syl 16 . . 3  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  ->  A  =/=  -u _i )
13 fveq2 5687 . . . . . 6  |-  ( A  =  _i  ->  (
Re `  A )  =  ( Re `  _i ) )
1413, 6syl6eq 2452 . . . . 5  |-  ( A  =  _i  ->  (
Re `  A )  =  0 )
1514necon3i 2606 . . . 4  |-  ( ( Re `  A )  =/=  0  ->  A  =/=  _i )
162, 15syl 16 . . 3  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  ->  A  =/=  _i )
17 atandm 20669 . . 3  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  A  =/=  -u _i  /\  A  =/= 
_i ) )
181, 12, 16, 17syl3anbrc 1138 . 2  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  ->  A  e.  dom arctan )
19 halfcl 10149 . . . . . 6  |-  ( _i  e.  CC  ->  (
_i  /  2 )  e.  CC )
204, 19ax-mp 8 . . . . 5  |-  ( _i 
/  2 )  e.  CC
21 ax-1cn 9004 . . . . . . . 8  |-  1  e.  CC
22 mulcl 9030 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
234, 1, 22sylancr 645 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( _i  x.  A
)  e.  CC )
24 subcl 9261 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  -  ( _i  x.  A
) )  e.  CC )
2521, 23, 24sylancr 645 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 1  -  (
_i  x.  A )
)  e.  CC )
26 atandm2 20670 . . . . . . . . 9  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  ( 1  -  ( _i  x.  A ) )  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 ) )
2718, 26sylib 189 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( A  e.  CC  /\  ( 1  -  (
_i  x.  A )
)  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 ) )
2827simp2d 970 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 1  -  (
_i  x.  A )
)  =/=  0 )
2925, 28logcld 20421 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( log `  (
1  -  ( _i  x.  A ) ) )  e.  CC )
30 addcl 9028 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  +  ( _i  x.  A
) )  e.  CC )
3121, 23, 30sylancr 645 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 1  +  ( _i  x.  A ) )  e.  CC )
3227simp3d 971 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 1  +  ( _i  x.  A ) )  =/=  0 )
3331, 32logcld 20421 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( log `  (
1  +  ( _i  x.  A ) ) )  e.  CC )
3429, 33subcld 9367 . . . . 5  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  e.  CC )
35 cjmul 11902 . . . . 5  |-  ( ( ( _i  /  2
)  e.  CC  /\  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  e.  CC )  ->  (
* `  ( (
_i  /  2 )  x.  ( ( log `  ( 1  -  (
_i  x.  A )
) )  -  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) ) )  =  ( ( * `  (
_i  /  2 ) )  x.  ( * `
 ( ( log `  ( 1  -  (
_i  x.  A )
) )  -  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) ) ) )
3620, 34, 35sylancr 645 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( * `  (
( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  A ) ) )  -  ( log `  (
1  +  ( _i  x.  A ) ) ) ) ) )  =  ( ( * `
 ( _i  / 
2 ) )  x.  ( * `  (
( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) ) ) )
37 2ne0 10039 . . . . . . . 8  |-  2  =/=  0
38 2cn 10026 . . . . . . . . 9  |-  2  e.  CC
394, 38cjdivi 11951 . . . . . . . 8  |-  ( 2  =/=  0  ->  (
* `  ( _i  /  2 ) )  =  ( ( * `  _i )  /  (
* `  2 )
) )
4037, 39ax-mp 8 . . . . . . 7  |-  ( * `
 ( _i  / 
2 ) )  =  ( ( * `  _i )  /  (
* `  2 )
)
41 divneg 9665 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  -u (
_i  /  2 )  =  ( -u _i  /  2 ) )
424, 38, 37, 41mp3an 1279 . . . . . . . 8  |-  -u (
_i  /  2 )  =  ( -u _i  /  2 )
43 cji 11919 . . . . . . . . 9  |-  ( * `
 _i )  = 
-u _i
44 2re 10025 . . . . . . . . . 10  |-  2  e.  RR
45 cjre 11899 . . . . . . . . . 10  |-  ( 2  e.  RR  ->  (
* `  2 )  =  2 )
4644, 45ax-mp 8 . . . . . . . . 9  |-  ( * `
 2 )  =  2
4743, 46oveq12i 6052 . . . . . . . 8  |-  ( ( * `  _i )  /  ( * ` 
2 ) )  =  ( -u _i  / 
2 )
4842, 47eqtr4i 2427 . . . . . . 7  |-  -u (
_i  /  2 )  =  ( ( * `
 _i )  / 
( * `  2
) )
4940, 48eqtr4i 2427 . . . . . 6  |-  ( * `
 ( _i  / 
2 ) )  = 
-u ( _i  / 
2 )
5049oveq1i 6050 . . . . 5  |-  ( ( * `  ( _i 
/  2 ) )  x.  ( * `  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) ) )  =  ( -u ( _i  /  2
)  x.  ( * `
 ( ( log `  ( 1  -  (
_i  x.  A )
) )  -  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) ) )
5134cjcld 11956 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( * `  (
( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )  e.  CC )
52 mulneg12 9428 . . . . . 6  |-  ( ( ( _i  /  2
)  e.  CC  /\  ( * `  (
( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )  e.  CC )  -> 
( -u ( _i  / 
2 )  x.  (
* `  ( ( log `  ( 1  -  ( _i  x.  A
) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) ) )  =  ( ( _i  / 
2 )  x.  -u (
* `  ( ( log `  ( 1  -  ( _i  x.  A
) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) ) ) )
5320, 51, 52sylancr 645 . . . . 5  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( -u ( _i  / 
2 )  x.  (
* `  ( ( log `  ( 1  -  ( _i  x.  A
) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) ) )  =  ( ( _i  / 
2 )  x.  -u (
* `  ( ( log `  ( 1  -  ( _i  x.  A
) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) ) ) )
5450, 53syl5eq 2448 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( * `  ( _i  /  2
) )  x.  (
* `  ( ( log `  ( 1  -  ( _i  x.  A
) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) ) )  =  ( ( _i  / 
2 )  x.  -u (
* `  ( ( log `  ( 1  -  ( _i  x.  A
) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) ) ) )
55 cjsub 11909 . . . . . . . . 9  |-  ( ( ( log `  (
1  -  ( _i  x.  A ) ) )  e.  CC  /\  ( log `  ( 1  +  ( _i  x.  A ) ) )  e.  CC )  -> 
( * `  (
( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )  =  ( ( * `
 ( log `  (
1  -  ( _i  x.  A ) ) ) )  -  (
* `  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) ) )
5629, 33, 55syl2anc 643 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( * `  (
( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )  =  ( ( * `
 ( log `  (
1  -  ( _i  x.  A ) ) ) )  -  (
* `  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) ) )
57 imsub 11895 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( Im `  ( 1  -  (
_i  x.  A )
) )  =  ( ( Im `  1
)  -  ( Im
`  ( _i  x.  A ) ) ) )
5821, 23, 57sylancr 645 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( Im `  (
1  -  ( _i  x.  A ) ) )  =  ( ( Im `  1 )  -  ( Im `  ( _i  x.  A
) ) ) )
59 reim 11869 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  (
Re `  A )  =  ( Im `  ( _i  x.  A
) ) )
6059adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( Re `  A
)  =  ( Im
`  ( _i  x.  A ) ) )
6160oveq2d 6056 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( Im ` 
1 )  -  (
Re `  A )
)  =  ( ( Im `  1 )  -  ( Im `  ( _i  x.  A
) ) ) )
6258, 61eqtr4d 2439 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( Im `  (
1  -  ( _i  x.  A ) ) )  =  ( ( Im `  1 )  -  ( Re `  A ) ) )
63 df-neg 9250 . . . . . . . . . . . . . 14  |-  -u (
Re `  A )  =  ( 0  -  ( Re `  A
) )
64 im1 11915 . . . . . . . . . . . . . . 15  |-  ( Im
`  1 )  =  0
6564oveq1i 6050 . . . . . . . . . . . . . 14  |-  ( ( Im `  1 )  -  ( Re `  A ) )  =  ( 0  -  (
Re `  A )
)
6663, 65eqtr4i 2427 . . . . . . . . . . . . 13  |-  -u (
Re `  A )  =  ( ( Im
`  1 )  -  ( Re `  A ) )
6762, 66syl6eqr 2454 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( Im `  (
1  -  ( _i  x.  A ) ) )  =  -u (
Re `  A )
)
68 recl 11870 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
6968adantr 452 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( Re `  A
)  e.  RR )
7069recnd 9070 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( Re `  A
)  e.  CC )
7170, 2negne0d 9365 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  ->  -u ( Re `  A
)  =/=  0 )
7267, 71eqnetrd 2585 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( Im `  (
1  -  ( _i  x.  A ) ) )  =/=  0 )
73 logcj 20454 . . . . . . . . . . 11  |-  ( ( ( 1  -  (
_i  x.  A )
)  e.  CC  /\  ( Im `  ( 1  -  ( _i  x.  A ) ) )  =/=  0 )  -> 
( log `  (
* `  ( 1  -  ( _i  x.  A ) ) ) )  =  ( * `
 ( log `  (
1  -  ( _i  x.  A ) ) ) ) )
7425, 72, 73syl2anc 643 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( log `  (
* `  ( 1  -  ( _i  x.  A ) ) ) )  =  ( * `
 ( log `  (
1  -  ( _i  x.  A ) ) ) ) )
75 cjsub 11909 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( * `  ( 1  -  (
_i  x.  A )
) )  =  ( ( * `  1
)  -  ( * `
 ( _i  x.  A ) ) ) )
7621, 23, 75sylancr 645 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( * `  (
1  -  ( _i  x.  A ) ) )  =  ( ( * `  1 )  -  ( * `  ( _i  x.  A
) ) ) )
77 1re 9046 . . . . . . . . . . . . . 14  |-  1  e.  RR
78 cjre 11899 . . . . . . . . . . . . . 14  |-  ( 1  e.  RR  ->  (
* `  1 )  =  1 )
7977, 78mp1i 12 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( * `  1
)  =  1 )
80 cjmul 11902 . . . . . . . . . . . . . . 15  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( * `  (
_i  x.  A )
)  =  ( ( * `  _i )  x.  ( * `  A ) ) )
814, 1, 80sylancr 645 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( * `  (
_i  x.  A )
)  =  ( ( * `  _i )  x.  ( * `  A ) ) )
8243oveq1i 6050 . . . . . . . . . . . . . . 15  |-  ( ( * `  _i )  x.  ( * `  A ) )  =  ( -u _i  x.  ( * `  A
) )
83 cjcl 11865 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )
8483adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( * `  A
)  e.  CC )
85 mulneg1 9426 . . . . . . . . . . . . . . . 16  |-  ( ( _i  e.  CC  /\  ( * `  A
)  e.  CC )  ->  ( -u _i  x.  ( * `  A
) )  =  -u ( _i  x.  (
* `  A )
) )
864, 84, 85sylancr 645 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( -u _i  x.  (
* `  A )
)  =  -u (
_i  x.  ( * `  A ) ) )
8782, 86syl5eq 2448 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( * `  _i )  x.  (
* `  A )
)  =  -u (
_i  x.  ( * `  A ) ) )
8881, 87eqtrd 2436 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( * `  (
_i  x.  A )
)  =  -u (
_i  x.  ( * `  A ) ) )
8979, 88oveq12d 6058 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( * ` 
1 )  -  (
* `  ( _i  x.  A ) ) )  =  ( 1  - 
-u ( _i  x.  ( * `  A
) ) ) )
90 mulcl 9030 . . . . . . . . . . . . . 14  |-  ( ( _i  e.  CC  /\  ( * `  A
)  e.  CC )  ->  ( _i  x.  ( * `  A
) )  e.  CC )
914, 84, 90sylancr 645 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( _i  x.  (
* `  A )
)  e.  CC )
92 subneg 9306 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( _i  x.  (
* `  A )
)  e.  CC )  ->  ( 1  - 
-u ( _i  x.  ( * `  A
) ) )  =  ( 1  +  ( _i  x.  ( * `
 A ) ) ) )
9321, 91, 92sylancr 645 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 1  -  -u (
_i  x.  ( * `  A ) ) )  =  ( 1  +  ( _i  x.  (
* `  A )
) ) )
9476, 89, 933eqtrd 2440 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( * `  (
1  -  ( _i  x.  A ) ) )  =  ( 1  +  ( _i  x.  ( * `  A
) ) ) )
9594fveq2d 5691 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( log `  (
* `  ( 1  -  ( _i  x.  A ) ) ) )  =  ( log `  ( 1  +  ( _i  x.  ( * `
 A ) ) ) ) )
9674, 95eqtr3d 2438 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( * `  ( log `  ( 1  -  ( _i  x.  A
) ) ) )  =  ( log `  (
1  +  ( _i  x.  ( * `  A ) ) ) ) )
97 imadd 11894 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( Im `  ( 1  +  ( _i  x.  A ) ) )  =  ( ( Im `  1
)  +  ( Im
`  ( _i  x.  A ) ) ) )
9821, 23, 97sylancr 645 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( Im `  (
1  +  ( _i  x.  A ) ) )  =  ( ( Im `  1 )  +  ( Im `  ( _i  x.  A
) ) ) )
9960oveq2d 6056 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 0  +  ( Re `  A ) )  =  ( 0  +  ( Im `  ( _i  x.  A
) ) ) )
10064oveq1i 6050 . . . . . . . . . . . . . 14  |-  ( ( Im `  1 )  +  ( Im `  ( _i  x.  A
) ) )  =  ( 0  +  ( Im `  ( _i  x.  A ) ) )
10199, 100syl6eqr 2454 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 0  +  ( Re `  A ) )  =  ( ( Im `  1 )  +  ( Im `  ( _i  x.  A
) ) ) )
10270addid2d 9223 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 0  +  ( Re `  A ) )  =  ( Re
`  A ) )
10398, 101, 1023eqtr2d 2442 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( Im `  (
1  +  ( _i  x.  A ) ) )  =  ( Re
`  A ) )
104103, 2eqnetrd 2585 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( Im `  (
1  +  ( _i  x.  A ) ) )  =/=  0 )
105 logcj 20454 . . . . . . . . . . 11  |-  ( ( ( 1  +  ( _i  x.  A ) )  e.  CC  /\  ( Im `  ( 1  +  ( _i  x.  A ) ) )  =/=  0 )  -> 
( log `  (
* `  ( 1  +  ( _i  x.  A ) ) ) )  =  ( * `
 ( log `  (
1  +  ( _i  x.  A ) ) ) ) )
10631, 104, 105syl2anc 643 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( log `  (
* `  ( 1  +  ( _i  x.  A ) ) ) )  =  ( * `
 ( log `  (
1  +  ( _i  x.  A ) ) ) ) )
107 cjadd 11901 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( * `  ( 1  +  ( _i  x.  A ) ) )  =  ( ( * `  1
)  +  ( * `
 ( _i  x.  A ) ) ) )
10821, 23, 107sylancr 645 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( * `  (
1  +  ( _i  x.  A ) ) )  =  ( ( * `  1 )  +  ( * `  ( _i  x.  A
) ) ) )
10979, 88oveq12d 6058 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( * ` 
1 )  +  ( * `  ( _i  x.  A ) ) )  =  ( 1  +  -u ( _i  x.  ( * `  A
) ) ) )
110 negsub 9305 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( _i  x.  (
* `  A )
)  e.  CC )  ->  ( 1  + 
-u ( _i  x.  ( * `  A
) ) )  =  ( 1  -  (
_i  x.  ( * `  A ) ) ) )
11121, 91, 110sylancr 645 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 1  +  -u ( _i  x.  (
* `  A )
) )  =  ( 1  -  ( _i  x.  ( * `  A ) ) ) )
112108, 109, 1113eqtrd 2440 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( * `  (
1  +  ( _i  x.  A ) ) )  =  ( 1  -  ( _i  x.  ( * `  A
) ) ) )
113112fveq2d 5691 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( log `  (
* `  ( 1  +  ( _i  x.  A ) ) ) )  =  ( log `  ( 1  -  (
_i  x.  ( * `  A ) ) ) ) )
114106, 113eqtr3d 2438 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( * `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  =  ( log `  (
1  -  ( _i  x.  ( * `  A ) ) ) ) )
11596, 114oveq12d 6058 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( * `  ( log `  ( 1  -  ( _i  x.  A ) ) ) )  -  ( * `
 ( log `  (
1  +  ( _i  x.  A ) ) ) ) )  =  ( ( log `  (
1  +  ( _i  x.  ( * `  A ) ) ) )  -  ( log `  ( 1  -  (
_i  x.  ( * `  A ) ) ) ) ) )
11656, 115eqtrd 2436 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( * `  (
( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )  =  ( ( log `  ( 1  +  ( _i  x.  ( * `
 A ) ) ) )  -  ( log `  ( 1  -  ( _i  x.  (
* `  A )
) ) ) ) )
117116negeqd 9256 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  ->  -u ( * `  (
( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )  =  -u ( ( log `  ( 1  +  ( _i  x.  ( * `
 A ) ) ) )  -  ( log `  ( 1  -  ( _i  x.  (
* `  A )
) ) ) ) )
118 addcl 9028 . . . . . . . . 9  |-  ( ( 1  e.  CC  /\  ( _i  x.  (
* `  A )
)  e.  CC )  ->  ( 1  +  ( _i  x.  (
* `  A )
) )  e.  CC )
11921, 91, 118sylancr 645 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 1  +  ( _i  x.  ( * `
 A ) ) )  e.  CC )
120 atandmcj 20702 . . . . . . . . . 10  |-  ( A  e.  dom arctan  ->  ( * `
 A )  e. 
dom arctan )
12118, 120syl 16 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( * `  A
)  e.  dom arctan )
122 atandm2 20670 . . . . . . . . . 10  |-  ( ( * `  A )  e.  dom arctan  <->  ( ( * `
 A )  e.  CC  /\  ( 1  -  ( _i  x.  ( * `  A
) ) )  =/=  0  /\  ( 1  +  ( _i  x.  ( * `  A
) ) )  =/=  0 ) )
123122simp3bi 974 . . . . . . . . 9  |-  ( ( * `  A )  e.  dom arctan  ->  ( 1  +  ( _i  x.  ( * `  A
) ) )  =/=  0 )
124121, 123syl 16 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 1  +  ( _i  x.  ( * `
 A ) ) )  =/=  0 )
125119, 124logcld 20421 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( log `  (
1  +  ( _i  x.  ( * `  A ) ) ) )  e.  CC )
126 subcl 9261 . . . . . . . . 9  |-  ( ( 1  e.  CC  /\  ( _i  x.  (
* `  A )
)  e.  CC )  ->  ( 1  -  ( _i  x.  (
* `  A )
) )  e.  CC )
12721, 91, 126sylancr 645 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 1  -  (
_i  x.  ( * `  A ) ) )  e.  CC )
128122simp2bi 973 . . . . . . . . 9  |-  ( ( * `  A )  e.  dom arctan  ->  ( 1  -  ( _i  x.  ( * `  A
) ) )  =/=  0 )
129121, 128syl 16 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 1  -  (
_i  x.  ( * `  A ) ) )  =/=  0 )
130127, 129logcld 20421 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( log `  (
1  -  ( _i  x.  ( * `  A ) ) ) )  e.  CC )
131125, 130negsubdi2d 9383 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  ->  -u ( ( log `  (
1  +  ( _i  x.  ( * `  A ) ) ) )  -  ( log `  ( 1  -  (
_i  x.  ( * `  A ) ) ) ) )  =  ( ( log `  (
1  -  ( _i  x.  ( * `  A ) ) ) )  -  ( log `  ( 1  +  ( _i  x.  ( * `
 A ) ) ) ) ) )
132117, 131eqtrd 2436 . . . . 5  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  ->  -u ( * `  (
( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )  =  ( ( log `  ( 1  -  (
_i  x.  ( * `  A ) ) ) )  -  ( log `  ( 1  +  ( _i  x.  ( * `
 A ) ) ) ) ) )
133132oveq2d 6056 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( _i  / 
2 )  x.  -u (
* `  ( ( log `  ( 1  -  ( _i  x.  A
) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) ) )  =  ( ( _i  / 
2 )  x.  (
( log `  (
1  -  ( _i  x.  ( * `  A ) ) ) )  -  ( log `  ( 1  +  ( _i  x.  ( * `
 A ) ) ) ) ) ) )
13436, 54, 1333eqtrd 2440 . . 3  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( * `  (
( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  A ) ) )  -  ( log `  (
1  +  ( _i  x.  A ) ) ) ) ) )  =  ( ( _i 
/  2 )  x.  ( ( log `  (
1  -  ( _i  x.  ( * `  A ) ) ) )  -  ( log `  ( 1  +  ( _i  x.  ( * `
 A ) ) ) ) ) ) )
135 atanval 20677 . . . . 5  |-  ( A  e.  dom arctan  ->  (arctan `  A )  =  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  A ) ) )  -  ( log `  (
1  +  ( _i  x.  A ) ) ) ) ) )
13618, 135syl 16 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
(arctan `  A )  =  ( ( _i 
/  2 )  x.  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) ) )
137136fveq2d 5691 . . 3  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( * `  (arctan `  A ) )  =  ( * `  (
( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  A ) ) )  -  ( log `  (
1  +  ( _i  x.  A ) ) ) ) ) ) )
138 atanval 20677 . . . 4  |-  ( ( * `  A )  e.  dom arctan  ->  (arctan `  ( * `  A
) )  =  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  ( * `  A
) ) ) )  -  ( log `  (
1  +  ( _i  x.  ( * `  A ) ) ) ) ) ) )
139121, 138syl 16 . . 3  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
(arctan `  ( * `  A ) )  =  ( ( _i  / 
2 )  x.  (
( log `  (
1  -  ( _i  x.  ( * `  A ) ) ) )  -  ( log `  ( 1  +  ( _i  x.  ( * `
 A ) ) ) ) ) ) )
140134, 137, 1393eqtr4d 2446 . 2  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( * `  (arctan `  A ) )  =  (arctan `  ( * `  A ) ) )
14118, 140jca 519 1  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( A  e.  dom arctan  /\  ( * `  (arctan `  A ) )  =  (arctan `  ( * `  A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   dom cdm 4837   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947   _ici 8948    + caddc 8949    x. cmul 8951    - cmin 9247   -ucneg 9248    / cdiv 9633   2c2 10005   *ccj 11856   Recre 11857   Imcim 11858   logclog 20405  arctancatan 20657
This theorem is referenced by:  atanrecl  20704
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-pi 12630  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407  df-atan 20660
  Copyright terms: Public domain W3C validator